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1 ocat i on w i t  h i  n 

bubble was stud 

vectors as wel l  

SUMMARY 

A numerical s imulat ion of bubble-type vortex breakdown using a unique 

d i s c r e t e  form o f  the f u l l  three-dimensional unsteady incompressible Navier- 

Stokes equations was performed. The Navier-Stokes equations were w r i t t e n  i n  

a v o r t i c i t y - v e l o c i t y  form and the physical problem was not  r e s t r i c t e d  t o  

axisymmetric f low. 

was parameterized i n  terms o f  a Rossby number-Reynolds number basis. U t i l i -  

zat ion o f  t h i s  parameter duo was shown t o  d i c t a t e  the form o f  the f r e e - f i e l d  

boundary condi t ion s p e c i f i c a t i o n  and a1 lowed c o n t r o l  o f  axi a1 breakdown 

Based on the resu l t s  o f  a previous study, t he  problem 

the computational domain. The s t r u c t u r e  o f  the breakdown 

u t i on  p l o t s  o f  p lanar projected v e l o c i t y  

p a r t i c l e  t races and vortex l i nes .  These 

r e s u l t s  compared favorably w i th  previous experimental studies. I n  addit ion, 

p r o f i l e s  o f  a l l  three v e l o c i t y  components are presented a t  various ax ia l  

s t a t i o n s  and a Fourier analysis was performed t o  i d e n t i f y  t h e  dominant 

c i r cumfe ren t ia l  modes. The dynamics o f  the breakdown process were studied 

through p l o t s  o f  ax ia l  v a r i a t i o n  o f  ra te o f  change o f  in tegrated t o t a l  

energy and r a t e  o f  change o f  integrated enstrophy, as wel l  as through 

contour p l o t s  o f  ve loc i ty ,  v o r t i c i t y  and pressure. 

ed through time evo 

as through p l o t s  o f  
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NOMENCLATURE 

K 

P 

r 

rc 

r* 

R i  

Re 

Ro 

t 

( u  ,v ,w) 

UaJ 

U* 

an adjustable constant associated w i t h  the vortex core 
diameter 

n x m row vector where m i s  the number o f  unknowns i n  a 
c e l l  

3x3 exponential t rans fo rm t i o n  ma t r i x  

a vector funct ion,  the cross product o f  which i s  
divegrence f ree  

auz au, 
L I defined as (q + A) ax 

scalar quant i ty  i n  Kaczmarz r e l a x a t i o n  scheme 
boundary condi t ion f o r  the v e l o c i t y  vector 
def ined as (Ax/2 ,Ay/2,&/21 r e s p e c t i v e l y  

computational domain lengths i n  the x, y and z d i rec t i ons ,  
respect ive 1 y 

a constant proport ional  t o  c i r c u l a t i o n  

pressure va r iab le  

rad ia  1 coordi na t e  

r a d i a l  reference length def ined as (2v/a) 2 v 
rad ius where the s w i r l  v e l o c i t y  i s  a maximum 

res idual  quan t i t y  i n  Kaczmarz r e l a x a t i o n  scheme 

Reynolds number; defined as 

Rossby number; defined a s  7 
r Q  

time va r iab le  

U * r *  

U* 

v e l o c i t y  components i n  (x,y,z) system o f  coordinates 
r e  spec ti ve 1 y 

f r e e  stream a x i a l  ve loc i t y  

a x i a l  v e l o c i t y  a t  a rad ius  equal t o  r* 
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uO 

E. 

Crt 

V 

P 

Q 

a x i a l  v e l o c i t y  excess ( o r  d e f i c i t )  a t  the vortex 
center1 i n e  

s w i r l  v e l o c i t y  

Cartesian system o f  coordinates: x-axial  , y-transverse, 
z-spanwi se 

noniiEefisional coordinates f o r  use i n  g r i d  genera t ion;  

transverse and spanwi se coordinates corresponding t o  the 
l o c a t i o n  o f  the vortex c e n t e r l i n e  

defined as (Ax/Az ,Ax/Ay , Ay/ Az) , respec ti vely  

defined as Uo/Ua 

cen t ra l  dif ference s p a t i a l  opera t o r s  

centra 1 d i f f e rence  time opera t o r  

d i s c r e t i z a t i o n  i n t e r v a l s  

s t r e t c h i n g  parameter f o r  g r i d  i n  y and z d i r e c t i o n s  

transformed v o r t i c i t y  i n  (x,y,z) system o f  coordinates, 
respec ti vely  

de f i ned  as  (F, 3' 21, respec t i ve l y  

def ined as (At/Ax,At/Ay,At/Az) , respec t i ve l y  

o< ( x  *y  ' 2  1 <1 

s p a t i a l  averaging operators 

time average opera t o r  

k inemat ic v i scos i t y  

densi t y  

s t r e t c h i n g  parameter f o r  g r i d  i n  x d i r e c t i o n  

def ined as tn+ - tn 

def ined as tn+l - tn+lI2 

var iab les  r e l a t e d  to  the g rad ien t  o f  

a sca lar  quan t i t y  used i n  the Helmho 

v o r t i c i t y  

t z  p r o j e c t  

v o r t i c i t y  components i n  (x,y,z) system o f  coord 
respec ti v e l  y 

r a t e  of r o t a t i o n  taken i n  the l i m i t  as  rw 
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INTRODUCTION 

Vor t ices and v o r t i c a l  motions have played an important r o l e  i n  the 

development of t heo re t i ca l  f l u i d  mechanics. For instance, the Helmhol tt 

Theorems o f  V o r t i c i t y  and general izat ions by Kelvin, Crocco and others 

establ ished f l o w  proper t ies i nvo l v ing  the kinematics o f  vortex l i n e s  and 

the dynamics of v o r t i c i t y .  The theory o f  l i f t i n g  surfaces, developed by 

Prandt l ,  Kutta and Joukowski, i s  based on the concept o f  a bound 

vortex.  Recently, the recogni t ion o f  l a rge  scale coherent v o r t i c a l  

s t ruc tu res  i n  tu rbu len t  f lows has resul.ted i n  renewed i n t e r e s t  i n  the 

study o f  vor t ices.  

Although no general d e f i n i t i o n  o f  a vortex ex is ts ,  i t  can be 

thought o f  as a c o l l e c t i o n  o f  f l u i d  p a r t i c l e s  r o t a t i n g  around a common 

ax i s .  Mathematically, v o r t i c i t y  i s  def ined as the c u r l  o f  the v e l o c i t y  

vector  and i s  equivalent t o  bvice the angular v e l o c i t y  o f  a f l u i d  

p a r t i c l e .  I n  addi t ion,  i t  i s  n o t  necessary f o r  a v o r t i c i t y  f i e l d  to 

represent  a vortex, an example being a p a r a l l e l  shear flow. 

. The most common development o f  a vortex occurs when a boundary 

l a y e r  separates from a surface and r o l l s  up i n t o  a wake vortex. T i p  

v o r t i c e s  f a l l  i n t o  t h i s  class. T i p  v o r t i c e s  a re  generated when a f l u i d  

f lows against  a f i n i t e  p l a t e  or sharp edged body a t  a nonzero angle o f  

a t tack .  These vor t ices are often h i g h l y  s tab le s t ructures and are 

character ized by a strong ax ia l  flow. Other examples o f  v o r t i c e s  w i th  
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an a x i a l  v e l o c i t y  component include tornados and waterspouts, i n t a k e  

v o r t i c e s  and s w i r l i n g  f lows i n  pipes and tubes. 

The presence o f  t i p  vor t ices i n  the wake o f  l a rge  a i r c r a f t  

c o n s t i t u t e  a hazard i n  areas o f  dense a i r  t r a f f i c .  These v o r t i c e s  can 

cause severe r o l l i n g  o f  smaller a i r c r a f t  t h a t  enter  them. They a re  

d i s s i p a t e d  e i t h e r  by viscous d iss ipat ion,  a s inusoidal  type i n s t a b i l i t y  

or, i n f requen t l y ,  by a core burst ing mechanism. 

Leading edge v o r t i c e s  shed from a de l ta  wing induce a v e l o c i t y  

f i e l d  that r e s u l t s  i n  increased l i f t and s t a b i l i t y  o f  the wing [l]. 

However, 'under c e r t a i n  condi t ions r e l a t e d  t o  the angle o f  a t tack o f  the 

wing, these v o r t i c e s  can undergo a sudden and d r a s t i c  change i n  

s t r u c t u r e  known as vortex breakdown. This  breakdown can a1 t e r  severely 

the aerodynamic c h a r a c t e r i s t i c s  o f  the wing. 

S w i r l i n g  f lows have been used t o  s t a b i l i z e  high i n t e n s i t y  

combustion processes c21. Here a r e c i r c u l a t i o n  zone a c t s  to s t a b i l i z e  

combustion by r e c i r c u l a t i n g  hot gases to  the root o f  the flame. I n  

add i t i on ,  combustion lengths are reduced due to  the high l e v e l s  o f  

entrainment induced by the r e c i r c u l a t i o n  zone. 

The a b i l i t y  to con t ro l  these v o r t i c a l  s t ructures i s  an impor tant  

and a c t i v e  area o f  research. For example, i t  i s  des i rab le  t o  delay the 

breakdown process over a del ta wing and accelerate the process i n  

regards to t r a i l i n g  wing t i p  vort ices. I n  combustion app l i ca t i ons ,  the 

i n t e r n a l  s t r u c t u r e  o f  the r e c i r c u l a t i o n  (breakdown) reg ion i s  o f  

c r i t i c a l  importance. Unfortunately, a comprehensive theory t o  describe 

the breakdown process and the parameters a f f e c t i n g  i t  i s  l a c k i n g  
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present ly ,  although several have been proposed. A review o f  these 

theo r ies  and support ing numerical and experimental work fol lows. 

Ycrtex breakdown was f i r s t  observed exper imenta l ly  by Peckham and 

Atkinson [3]. They observed that  v o r t i c e s  shed from a de l ta  wing a t  

h igh angles o f  a t tack  appeared to " b e l l  out"  and d i s s i p a t e  several core 

diameters downstream from the t r a i l i n g  edge o f  a wing. Since then, 

vortex breakdown has been observed i n  s w i r l i n g  f lows i n  s t r a i g h t  pipes, 

nozzles, d i f f use rs  and combustion chambers, [2,4] and tornados [SI. 

Seven types of breakdown have been i d e n t i f i e d  experimental ly, [61 

ranging from a m i l d  " s p i r a l "  type to a strong "bubble" type breakdown. 

Observations i n  the e a r l y  1960's spurred considerable e f f o r t  t o  develop 

a theore t i c a  1 explanation o f  the vortex breakdown phenomena. Three 

schools o f  thought can be i d e n t i f i e d ,  a l l  of which may be d iv ided i n t o  

th ree  separate groups: 1) The concept of a c r i t i c a l  s ta te  [7,8,91; 

2)  Analogy t o  boundary l a y e r  separation [lO,11] and, 3 )  Hydrodynamic 

i n s t a b i l i t y  [12,13,14]. 

Squfre [7 ]  appears t o  be the f i r s t  t o  have performed a theo re t i ca l  

a n a l y s i s  o f  vortex breakdown. He suggested t h a t  if standing waves were 

a b l e  t o  e x i s t  on a vortex core then small disturbances, present 

downstream, could propogate upstream and cause breakdown. This i s  

analogous to the e a r l i e r  work o f  Taylor [ l S l  on the s t a b i l i t y  o f  

c i r c u l a r  Couette flow. There, a l i n e a r  s t a b i l i t y  ana lys i s  was performed 

t o  asce r ta in  the a b i l i t y  o f  the base f low to support axisymmetric 

standing wave disturbances. Two o f  the cases studied by Squire assumed 

t h a t  the vortex f low was i n v i s c i d  and axisymmetric. The assumed form o f  

the upstream v e l o c i t y  d i s t r i b u t i o n  r e s u l t e d  i n  a l i n e a r  disturbance 

equat ion which he then solved to determine a cond i t i on  under which an 
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i n v i s c i d ,  axisymmetric, steady pe r tu rba t i on  to the flow could e x i s t .  

Th i s  condi t ion,  which was necessary for  the existence of a standing 

wave, wss taken t o  mark the t r a n s i t i o n  between s u b c r i t i c a l  and 

s u p e r c r i t i c a l  states. . I n  Squire's f i r s t  case, the a x i a l  ve loc i t y ,  U, 

was considered to be a constant. The dimensionless s w i r l  v e l o c i t y  V was 

taken piecewise as t h a t  o f  so l i d  body r o t a t i o n  i n s i d e  a core o f  u n i t  

r a d i u s  (V=Vor) and connected w i t h  a p o t e n t i a l  vortex outside (V=Vo/r). 

A constant, Vo, was used t o  contro l  the sw i r l .  He found t h a t  for  

standing waves t o  e x i s t  a s w i r l  parameter, "k", which was the r a t i o  o f  

the maximum s w i r l  speed t o  the a x i a l  speed (Vmx/U),  had t o  be greater  

than, or  equal to 1.20. When k=1.20 the wave i s  i n f i n i t e l y  long, b u t  i t  

has a f i n i t e  wavelength f o r  k>1.20. 

I n  the second case U was also taken t o  be a constant, b u t  the s w i r l  

w i th  V o  a nondimensional 
2 

v e l o c i t y  was assumed t o  be V = (Vo/r)( l -e- '  

parameter. Again Squire found t h a t  there was a cond i t i on  on the s w i r l  

parameter k f o r  the existence of a standing wave. This cond i t i on  was 

k = V m x / > l . O  where we note t h a t  VmX=O.638 V,. 

Benjamin [SI examined th i s  phenomena from a d i f f e r e n t  p o i n t  o f  

view. He considered vortex breakdown to be a f i n i t e  t r a n s i t i o n  between 

two dynamically conjugate states o f  flow, s i m i l a r  t o  the occurrence o f  a 

h y d r a u l i c  jump i n  open channel flow. These a re  a s u b c r i t i c a l  f low, 

which i s  defined as the s ta te  t h a t  i s  able to support standing waves, 

and the conjugate s u p e r c r i t i c a l  f l o w  which i s  unable to support standing 

waves. S u b c r i t i c a l  f lows general ly have higher s w i r l  v e l o c i t i e s  than 

the conjugate s u p e r c r i t i c a l  f l o w .  I n  t h i s  context, the work o f  Squire 

g i ves  a condi t ion marking the i n te r face  between these two states. As i n  

the work of Squire, a universal c h a r a c t e r i s t i c  parameter was def ined 
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.which  delineates the critical regions of the flow. This parameter, 

denoted by N, is the ratio of absolute phase velocities of long 

wavelength waves w h i c h  propagate a l o n g  the vortex i n  the axial 

direction, i.e., N=(C++ C-)/(C+-C-). Here C+ and C, are the phase 

velocit ies of the waves which propagate w i t h  and against the flow 

respectively. For N>1 the flow conditions are supercritical and  for  

N < l ,  subcritical. 

Benjamin applied this theory to a specific vortex flow, defined by 

a constant a x i a l  velocity, U,  and V=Vor, O<r<l and V=Vo/r, l<r<R. If 

R-, this i s  just the combined vortex studied by Squire [7]. Benjamin 

found that  the cri t ical  cond i t ion  was the same form as Squire's. The 

precise value o f  the constant depends on the value of R b u t  l ies  bebeen 

1.92 when R = l  and 1.20 when R approaches i n f i n i t y .  T h u s  Benjamin, 

a l t h o u g h  starting from a different perspective, arrived a t  the same 

cr i t ica l  condition for  a combined vortex a s  d i d  Squire. 

A recent paper by Ito, Suematsu, and Hayase C161 examined b o t h  

stationary and unsteady vortex breakdown i n  an inviscid, incompressible 

f l u i d .  They considered the stability of a columnar Gortex subjected to  

small amp1 i tude disturbances. The disturbances considered were 

axisymmetric a s  well a s  asymmetric and ei ther steady or unsteady. Their 

analysis produced a criterion for  breakdown from the requirement for 

existence of solutions to their disturbance equations. A comparison of 

these results w i t h  those o f  Benjamin [8J, fo r  t h e  case of a f inite 

r a d i u s  pipe containing a rigid-body rotation, gave the same criterion 

for  breakdown. The important aspect of the work of Ito e t  a l .  lies i n  

their interpretive criterion. Their nondimensional iza t ion  leads to the 

Rossb'y number as the c o n t r o l l i n g  parameter. For example, i n  the case of 

5 



s w i r l i n g  pipe flow cons is t i ng  o f  s o l i d  body r o t a t i o n ,  the r e l e v a n t  

scales are the a x i a l  v e l o c i t y  U, p ipe rad ius  ro and constant angular 

v e l o c i t y  o f  the flow, Q. Thus the dimensionless c o n t r o l l i n g  parameter 

i s :  Ro=U/roQ. 

Tsai and Widnall 1171 examined a group v e l o c i t y  c r i t e r i o n  which can 

be considered as a v a r i a t i o n  of the phase v e l o c i t y  c r i t e r i o n  o f  Benjamin 

[SI. Thei r  analyses of s w i r l i n g  p ipe flow i s  more cons is ten t  w i th  the 

view t h a t  breakdown occurs due t o  a wave t rapping mechanism [MI. They 

assumed t h a t  the r a d i a l  and ax ia l  v e l o c i t y  d i s t r i b u t i o n s  could both be 

f i t  t o  exponential p r o f i l e s  [19]. They used a l e a s t  squares f i t  given 

by Garg and Leibovich to  calculate the d ispers ion r e l a t i o n  from l i n e a r  

p a r a l l e l  s t a b i l i t y  theory. The group v e l o c i t y  associated w i t h  var ious 

f l o w  p r o f i l e s  was then calculated. The r e s u l t s  showed t h a t  upstream o f  

breakdown the group v e l o c i t y  o f  both symmetric and asymmetric modes was 

d i r e c t e d  downstream, Even though t h e i r  c r i t i c a l i t y  cond i t i on  o f  zero 

group v e l o c i t y  proved to be an accurate guide for the var ious types o f  

breakdown, they were unable t o  e s t a b l i s h  a r e l a t i o n s h i p  between vortex 

breakdown and wave trapping. 

Bossel [ 9 ]  concluded that  breakdown was n o t  analogous t o  the 

hyd rau l i c  jump, ra the r  i t  was a regu la r  feature of the Navier-Stokes 

equations f o r  the given f lowf ie ld.  Th is  f l o w f i e l d  i s  considered t o  be 

supercr i  t i c a l  w i t h  r i g i d  i n i t i a l  r o t a  t i o n  and some a x i a l  decelerat ion 

near the axis, Bossel d i v ided  the f l o w f i e l d  i n t o  two d i s t i n c t  regions: 

(1) An inner  region, which could conta in  a stagnat ion point ,  and was 

approximated by the equations for an i n v i s c i d  r o t a t i n g  f l o w ;  and (21 ,  a 

viscous quas i - cy l i nd r i ca l  region which surrounds the i nne r  region. 

Bossel assumed the outer solut ion was known which produced cond i t i ons  a t  
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the boundary o f  the i n v i s c i d  region t h a t  w i l l  r e s u l t  i n  breakdown. For  

a r i g i d  r o t a t i o n  the i n v i s c i d  equation f o r  the stream funct ion becomes 

l f n e a r  2nd so lu t i ons  were obtained by superposit ion, Results which 

resemble the con f igu ra t i on  of a vortex breakdown were obtained. 

Ha l l  [111 considered vortex breakdown to be analagous to  the 

separat ion o f  a two dimensional boundary layer .  He assumed t h a t  a 

f a i l u r e  o f  the quasi-cy1 i n d r i c a l  approximation through la rge  a x i a l  

gradients  s ignaled an impending vortex breakdown. A numerical 

experiment was performed t o  t e s t  the theory using experimental data 

obtained by K i r k p a t r i c k  [ZOI. A r e t a r d a t i o n  o f  the f low along the a x i s  

was found, A t  t h i s  point ,  computations f a i l e d  due t o  the i n a b i l i t y  of 

the i t e r a t i o n  scheme t o  coverage. H a l l  considered t h i s  to represent the 

f a i l u r e  o f  the quasi -cy l indr ica l  approximation. I n  add i t i on ,  stream 

tube divergence, pressure gradient, and s w i r l  magnitude were var ied 

pa ramet r i ca l l y  and e f f e c t e d  the f a i l u r e  of the quas i - cy l i nd r i ca l  

approximation i n  a manner consistent w i th  t h e i r  a f f e c t  on vortex 

breakdown, H a l l  a l s o  found tha t  the e f f e c t  due to a change i n  Reynolds 

number was small. 

L inear  hydrodynamic stabi 1 i t y  theory i nves t i ga tes  only the 

a m p l i f i c a t i o n  o r  decay o f  i n f i n i t e s i m a l l y  small disturbances imposed on 

the base flow. Breakdown i s  then assumed to be analogous t o  laminar- 

t u r b u l e n t  t r a n s i t i o n .  O f  course, as pointed o u t  by Leibovich [21], 

breakdown can occur wi th  l i t t l e  s ign of i n s t a b i l i t y  and conversely a 

vor tex flow may become unstable and n o t  undergo breakdown. I n  the case 

o f  zero a x i a l  v e l o c i t y  the Rayleigh [221 c r i t e r i o n  ( t h a t  the square o f  

the c i r c u l a t i o n  should nowhere decrease as r increases) provides a 

necessary and s u f f i c i e n t  condi t ion f o r  f low s t a b i l i t y .  
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That vor tex breakdown may be a r e s u l t  of an hydrodynamic 

i n s t a b i l i t y  was f i r s t  proposed by Ludwig [12]. He found a s t a b i l i t y  

boundary w i t h  respect to s p i r a l  d isturbances for an i n v i s c i d  r o t a t i n g  

f l ow  i n  an annulus. . I t  was proposed t h a t  t h i s  i n s t a b i l i t y  could be 

amp l i f i ed  and induce an asymmetry i n  the core. Ludwig's idea has n o t  

been widely  accepted due to the d i f f i c u l t y  o f  r e l a t i n g  the geometry o f  

h i s  analyses to vortex breakdown. 

Howard and Gupta C131 have shown t h a t  the s t a b i l i t y  o f  the quasi 

cy1 i n d r i c a l  approximation s guaranteed i f  the "Richardson number" 

c r i t e r i o n  r-'(aur/ar)-*Vg [ a ( r V e l / a r ] c  1 /4 i s  s a t i s f i e d .  This imp l ies  

t h a t  the r o l e  o f  s w i r l  i s  pu re l y  s t a b i l i z i n g  f o r  axisymmetric 

disturbances. I n  pract ice,  nearly a l l  approach f lows tu rn  ou t  t o  be 

s t a b l e  to axisymmetric disturbances C211. 

Pedley [23] considered the s t a b i l i t y  o f  an almost f u l l y  developed 

viscous f low i n  a r o t a t i n g  pipe. He found t h a t  the f low became unstable 

t o  asymmetric disturbances for s u f f i c i e n t l y  small values o f  the Rossby 

number (def ined i n  terms o f  the r a t e  o f  r o t a t i o n  o f  the pipe, the pipe 

r a d i u s  and the a x i a l  ve loc i t y  o f  the f l u i d )  a t  a c r i t i c a l  Reynolds 

number o f  82.9. 

Lessen, Singh and P a i l l e t  C141 de f ined a parameter, q, i nvo l v ing  

the r a t i o  o f  the magnitude o f  the maximum s w i r l  to t h a t  o f  the maximum 

a x i a l  ve loc i t y .  This parameter 

s t a b i l i t y  cha rac te r i s t i cs  o f  the 

Ve= (q / r ) ( l - e - r  ), U = e . Thus 

p r o f i l e  does n o t  a f f e c t  s t a b i l i t y .  

t o  a l l  disturbances f o r  q>1.5 

2 -r 2 

completely determined the i n v i s c i d  

flow def ined by the equations 

a wake o r  j e t - l i k e  a x i a l  v e l o c i t y  

They found t h a t  the f low was s tab le  

and unstable t o  nonaxisymmetric 
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disturbances f o r  smaller va lues  of q. Thus ,  from the p o i n t  of view o f  

s t a b i l i t y ,  the r o l e  of s w i r l  i s  s t a b i l i z i n g  w i t h  respect t o  ax isymmetr ic  

disturbances, and d e s t a b i l i z i n g  w i t h  respect to asymmetric disturbances 

o v e r  a range of q. 

After the i n i t i a l  obse rva t ions  of vor tex  breakdown by Peckham and 

Atkinson [3], e x p e r i m e n t a l i s t s  began s tudying  vor tex  breakdown i n  a more 

c o n t r o l l a b l e  s e t t i n g .  Harvey C241 performed experiments i n  a long t u b e ,  

impar t ing  a swirl v e l o c i t y  on the f l u i d  as i t  entered. T h i s  was done 

u s i n g  a set  o f  a d j u s t a b l e  vanes mounted i n  the inlet s e c t i o n .  Harvey 

concluded tha t  f o r  low swirl v e l o c i t i e s .  the c l a s s i c a l  vo r t ex  was 

o b t a i n e d  b u t  a s  the swirl ms increased  a breakdown b u b b l e  formed. He 

a l s o  concluded t h a t  the breakdown was due to a c r i t i ca l  state phenomena 

and not a hydrodynamic i n s t a b i l i t y  since the flow reverted to  a normal 

s w i r l i n g  flow downstream of the breakdown bubble .  I n s t a b i l i t i e s  u sua l ly  

result i n  i n c r e a s i n g l y  l a r g e  amp1 i tude ve loc i  t y  f l u c t u a t i o n s  ending fn a 

t u r b u l e n t  flow. 

Sarpkaya [25] described exper iments  i n  s w i r l i n g  f lows  i n  a 

d i v e r g i n g  cy1 indrical  tube. He observed three types of breakdown; 

doub le  helix, s p i r a l ,  and axisymmetric. The  type o f  breakdown that  

occur red  depended on a combination of Reynolds number (based on tube  

diameter and mean a x i a l  v e l o c i t y )  and c i r c u l a t i o n .  For 1000<Re<2000 the 

s p i r a l  o r  double  helix breakdown was observed. Axisymmetric breakdown 

was found to develop from the doub le  h e l i x  o r  s p i r a l  form, o r  a s  an 

axisymmetric swe l l ing  of the co re .  For high Reynolds numbers and 

c i r c u l a t i o n  the axisymmetr ic  type breakdown occurred a s  a s w e l l i n g  of 

the vor tex  core.  He a l s o  noted t h a t  the axisymmetr ic  breakdown 

responded to changes i n  upstream and downstream flow c o n d i t i o n s  i n  a 
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manner analagous to  hydraul ic  jump i n  an open channel flow. In a later 

paper, Sarpkaya C261 concluded t h a t  Benjamin's f in i te  transition concept 

was f n  cmplete agreement w i t h  experimental results i n  the region where 

axisymmetric breakdown occurred ( h i g h  swirl and  Re). The spiral 

breakdown appeared to be a consequence of the instabil i ty of the flow 

d u e  to  asymmetric disturbances. He concluded that the overall mechanism 

for  vortex breakdown migh t  encompass f i n i t e  t r ans i t i on  and  hydrodynamic 

instabil i ty theories, each applicable i n  a specific region. 

Faler and Leibovich C271 have mapped the internal structure of an  

axisymmetric type vortex breakdown u s i n g  a laser-Doppler anemometer. 

They found t h a t  the interior o f  the bubble, which contained a two celled 

structure, was dominated by low frequency periodic velocity fluctua- 

t ions.  The magnitude of these fluctuations was greatest i n  the rear 

portion of the bubble. In add i t ion ,  four s b g n a t i o n  points existed on 

t h e  axis. 

The affect  of an adverse pressure gradien t  on vortex breakdown has 

been examined by Sarpkaya C281 and more recently by Delray e t  a l .  

[29]. Delray found experimental limits fo r  vortex breakdown as a 

function o f  adverse pressure gradient and vortex strength. Pressure 

measurements showed considerable pressure increase w i t h i n  the core for 

small variations outside the core. In general, a s  the adverse pressure 

. gradient increased, the swirl required to induce vortex breakdown 

decreased. 

Numerical solutions for vortex bursting have been reported by a t  

least  seven previous investigators [30,31,32,33,34,35,36]. In a l l  

cases, the flows were assumed to be incompressible and were restricted 
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t o  s tud ies o f  laminar, axisymmetric systems. The so lu t i ons  by Kraus 

e t  a l .  and Hafet e t  a l .  were t i m e  dependent wh i l e  the others were steady 

s t a t e  solut ions.  

Kopecky and Torrance [31] considered axisymmetric s w i r l i n g  f l ow  

through a c y l i n d r i c a l  tube. The f l u i d  entered the tube w i t h  an 

exponent ia l  swirl ve loc i t y .  This d i s t r i b u t i o n  behaved as a s o l i d  body 

near the a x i s  and as a p o t e n t i a l  vortex away f r o m  the axis,  represent ing 

a s o l u t i o n  to the Navier-Stokes equations f o r  the l i m i t i n g  case o f  

Reynolds number approaching i n f i n i t y .  A parametric study was performed 

w i t h  Reynolds numbers (based on tube rad ius and constant a x i a l  v e l o c i t y )  

ranging from 50 to 500 and s w i r l  r a t i o s  from 0.4 to  10. The development 

o f  a r e c i r c u l a t i o n  zone was demonstrated as the s w i r l  was increased for 

f i x e d  Reynolds number and core diameter. S im i la r  r e s u l t s  were obtained 

when the core diameter and sw i r l  were f i x e d  whi le  the Reynolds number 

was increased. I n  a l l  cases the breakdown appeared t o  form a t  the i n l e t  

s ta t i on .  With a g r i d  spacing o f  0.25 i n  the streamwise d i r e c t i o n  the 

major p o r t i o n  o f  the breakdown was contained w i t h i n  about fou r  g r i d  

po in ts .  While t h i s  g r i d  seems excessively coarse, Kopecky and Torrance 

repor ted t h a t  doubl ing the number o f  g r i d  po in ts  i n  the streamwise 

d i r e c t i o n  produced s i m i l a r  resul ts.  

Grabowski and Berger [331 solved the steady axisymmetric Navier- 

Stokes equations f o r  a free vortex approximated by a two parameter 

fami ly  o f  assumed i n f l o w  d i s t r i bu t i ons .  The i n f l o w s  were the polynomial 

p r o f i l e s  given by Mager [37] i n  h i s  i n t e g r a l  analysis,  imbedded i n  an 

i r r o t a t i o n a l  f l o w .  The equations o f  motion were w r i t t e n  i n  terms of 

s t re tched coordinates i n  the rad ia l  and a x i a l  d i rec t i ons .  A t  i n f l ow ,  a 

parameter, alpha, could be varied to  a l l ow  f o r  j e t  l i k e  o r  wake l i k e  



+ axial profiles. An "ar t i f ic ia l  compressibility" technique was used t o  

solve the equations of  motion. S o l u t i o n s  were obtained w h i c h  e x h i b i t e d  

many o f  t h e  characteristics of vortex breakdown f o r  Reynolds numbers u p  

t o  200. These sO1utiOnS were obtained w i t h  upstream conditions t h a t  

were, i n  many cases, subcr i t ica l .  Their results appear to refute the 

f i n i t e  t r a n s i t i o n  theory of Benjamin (81 w h i c h  required the flow 

upstream of breakdown to be supercri ti ca 1. 

Narin [321 investigated the occurrence of  vortex breakdown f o r  

three different f low configurations: (1) a straight tube, ( 2 )  a step 

tube, and (3)' confined j e t  mixing .  This appears t o  be the o n l y  work 

investigating the breakdown of a confined j e t ,  w h i c h  consists of  a 

swirling j e t  discharging i n t o  a coaxia l  nonrota t i n g  surrounding 

stream. For this configuration, the resulting flow field depended on 

the r a d i u s  of t h e  enclosing tube, j e t  velocity and swirl ratio, and on 

the velocity of the surrounding stream. I n  general , increasing Reynolds 

number and  swirl r a t i o  enhanced the severity o f  the vortex breakdown. 

Benay [35] has also simulated vortex breakdown by a numerical 

solution o f  the laminar axisymmetric Navier-Stokes equations. A t  

inflow, an exponential circumferential velocity distribution was imposed 

i n  a parametric study to determine the e f fec t  o f  vortex core radius, 

Reynolds number (based on t u b e  radius and free stream a x i a l  velocity), 

and tangential a n d  axial velocity on vortex breakdown. In general, an 

increase i n  the Reynolds number o r  swirl r a t i o  resulted i n  a more 

pronounced recirculation zone. 

Excel lent review ar t ic les  summarizing vortex breakdown research 

have been published by Hall  E381 and Leibovich [21,39]. Since relevant 
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numerical work o n l y  began i n  the mid 1970's, o n l y  Leibovich's survey 

includes those investigations. He noted t h a t  the numerical solutions do 

n o t  S h o w  a two celled structtlre w i t h i n  the breakdown b u b b l e  a s  revealed 

i n  physical experiments by Faler and Leibovich 1271. I n  a d d i t i o n ,  Faler 

and Leibovich measured four  s tagnat ion  poin ts  along the axis, whereas 

numerical experiments have shown o n l y  Go. However, this structure was 

la ter  claimed to have been computed by Kraus, S h i ,  and Hartwich [34] by 

studying the flow i n  a time dependent manner. An examination of their 

computed streamlines reveals that the b u b b l e  has l if ted o f f  the a x i s  f o r  

some of the time levels shown. A t  these time levels no stagnation 

p o i n t s  are present along the axis. Leibovich i s  also c r i t i c a l  o f  the 

fact  t h a t  the numerical solutions "contain strong a x i a l  gradients right 

u p  to t h e  i n i t i a l  axial station." He suggests t h a t  the bubble may pass 

through the i n i t i a l  stations i f  the in le t  boundary conditions were 

relaxed. In a d d i t i o n ,  axisymmetric numerical solutions show bubbles 

that increase in size a s  swirl i s  increased, a result  t h a t  i s  n o t  

consistent w i t h  experimental observations. Furthermore, a x i  symmetric 

numerical simulations are unable to  predict spiral type breakdowns, 

w h i c h  are a common occurrence in experiments 16,251. Thus, Leibovich 

has concluded t h a t  "the assumption of steady axisymmetric motion may n o t  

. '  

b e  adequate to compute a l l  the detailed structure of vortex breakdown." 

The purpose of this work was to study numerically the spatial and 

temporal evolution of a class of vortical structures. Wing t i p  vortices 

are o f  specific interest, b u t  the influence of w i n g  geometry on the t i p  

vortices was beyond the scope of t h i s  analysis. A numerical solution 

has been chosen because closed form analytic solutions o f  the equations 

. o f  motion are unlikely to be found w i t h o u t  assuming overly rest r ic t ive,  
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simp1 j f ie4 f low fields, An experimental approach was also deemed 

impractical  because of the d i f f i c u l t y  i n  r a k i n g  accurate measurements i n  

regions where the velocity gradien ts  are extreme, w h i c h  i s  often the 

s i  tua t i  on dur i ng vortex breakdown . T h u s ,  the unsteady, three- 

dimensional, .laminar Navier-Stokes equations have been integrated 

numerically to  study the parameters affecting the evolution and possible 

breakdown of a n  isolated wing t i p  vortex. 

Authors of  the numerical studies cited previously report breakdown 

a t  o r  immediately downstream of the inflow boundary. I t  w i l l  be shown 

t h a t  these previous computational results can be re-evaluated i n  terms 

of a single parameter w h i c h  identifies the cause o f  the breakdown a t  

i n f low.  T h rough  an examination of  several previous studies 

concentrating on standing wave analyses, i t  i s  shown t h a t  the 

c o n t r o l l i n g  parameter i s  the Rossby number. A means of a v o i d i n g  the 

problem of breakdown a t  inflow is suggested, and the numerical analyses 

i s  then performed w i t h  the Rossby number and Reynolds number as the 

nondimensional parameters. I t  i s  i m p o r t a n t  t o  emphasize the f a c t  t h a t  

the algorithm was no t  restricted by an axisymmetry requirement. This , 

allowed fo r  the existence of asymmetric disturbances w h i c h  may be 

important i n  the breakdown process. Previous numerical simula t i o n s  have 

precluded this possibility. The numerical a l g o r i t h m  w h i c h  has been used 

i s  .an implementation o f  t h e  "veloci ty-vortici ty"  formula t i o n  of Gatski, 

Grosch and Rose [39]. The pressure, although not  a variable i n  the 

formula t i o n ,  was computed. 

Contour p lo ts  o f  pressure, Bernoulli's constant, ax ia l  velocity and 

vorticity are displayed a s  a pa r t  of this inves t iga t ion ,  Particle 

traces,  vortex lines and velocity vector p lo ts  have been obtained us ing  
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6 the PLOT30, a three-dimensional co lor  graphics program implemented on an 

I r i s  workstat ion a t  NASA Langley Research Center. I n  a d d i t i o n ,  the 

r a t e s  o f  change of  energy and enstrophy were computed and p l o t t e d  as a 

f u n c t i o n  o f  a x i a l  l oca t i on .  Conclusions have been drawn which may be 

use fu l  i n  the i n t e r p r e t a t i o n ,  as w e l l  as the m o d i f i c a t i o n  and c o n t r o l ,  

o f  wing t i p  vo r t i ces .  F i n a l l y ,  the i n t e r n a l  s t r u c t u r e  o f  the vor tex 

breakdown bubble i s  discussed. 
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THE ROSSBY NUMBER - BREAKDOWN CRITE3ION 

The Rossby number i s  an important c o n t r o l  parameter i n  the study of  

l a r g e  scale atmospheric and oceanic motions. It i s  a measure o f  the 

r e l a t i v e  importance o f  the C o r i o l i s  and i n e r t i a l  forces on the f l u i d  

motion. The C o r i o l i s  force i s  due t o  the r o t a t i o n  o f  f l u i d  and i s  

d i r e c t e d  perpendicular t o  the axi-s o f  r o t a t i o n .  I n  the study of  

geophysical f l u i d  dynamics, f l u i d  r o t a t i o n  i s  genera l l y  considered t o  be 

o f  the r i g i d  body type. However, the C o r i o l i s  forces can be impor tant  

f o r  a v a r i e t y  o f  c i rcumferent ia l  v e l o c i t y  d i s t r i b u t i o n s  associated w i th  

o t h e r  flows, such as those occurr ing i n  wing t i p  and leading edge 

v o r t i c e s .  When s i g n i f i c a n t ,  the C o r i o l i s  a c c e l e r a t i o n  represents a 

r e s t o r i n g  force, p rov id ing  a mechanism for  the c r e a t i o n  o f  waves ( i n  the 

absence o f  s u f f i c i e n t  damping). I t  tends t o  -restore f l u i d  p a r t i c l e s  

d i sp laced  l a t e r a l l y  from t h e i r  e q u i l i b r i u m  pos i t i ons .  However, the 

r e s t o r i n g  f o r t e  can cause the f l u i d  p a r t i c l e s  t o  overshoot t h e i r  

o r i g i n a l  locat ions,  s e t t i n g  up an o s c i l l a t o r y  motion. Under some 

c o n d i t i o n s  the f l u i d  can susta in  these o s c i l l a t i o n s ,  and i n  the case o f  

v o r t e x  f lows, these wavelike f l u c t u a t i o n s  can then propagate along the 

a x i s  o f  the vortex. Waves o f  t h i s  type a r e  known as  i n e r t i a l  waves 

[40] ... The i n t e n t  of t h i s  chapter i s  t o  show how the vor tex breakdown 

phenomenon can be character ized i n  terms of the a b i l i t y  o f  a base f l o w  

t o  suppor t  these waves. This  e f f e c t  can.be described, i n  terms o f  the 



Rossby number, and can be justified by using the theoretical, experi- 

mental and  computational literature discussed i n  the introduction. 

- r h r o u g n o u t  the remainder of  tnis chapter a cyl'indrical polar  

coordinate system, ( r ,  8, x ) ,  w i t h  corresponding velocity components, w 

in the radial ( r )  direction, v in the circumferential ( e )  direction, and 

u i n  the a x i a l  ( X I  direction are employed. 

The Rossby number can be developed naturally from the v o r t i c i t y  

transport equation and i s  defined as the r a t i o  of the inertial forces t o  

the Coriol is  forces as 
U RO = f 

r R  
(2.1) 

* 
where u i s  a representative velocity magnitude, r a characteristic 

length, and 9, a characteristic rate o f  rotation o f  the flow. For  the 
* 

flows considered i n  this s t u d y ,  r i s  t a k e n  to  be the vortex core 

diameter, defined a s  the radius o f  maximum swirl velocity. The 

reference 

(r 1. 

velocity u i s  taken as the ax ia l  velocity a t  t h e  core r a d i u s  

Wing t i p  vortices a,re characterized by a solid body type rotation 
* 

near the axis, and t h i s  i s  taken to be the' characteristic rate of 

r o t a t i o n ,  Q. 

As discussed ear l ier ,  Squire [7], Benjamin 181 and I t o  e t  a l .  E161 

were able to derive a cri terion f o r  the existence of standing waves on a 

vortical base flow. Squire [7] and Benjamin [SI formulated this 

cri terion i n  terms o f  Characteristic circumferential and a x i a l  

velocities. Here i t  wi l l  be shown t h a t  their cri teria can be 

reinterpreted i n  terms of a Rossby number. 
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The most impor t an t  Case considered by Squire, i n  terms o f  a model 

f o r  vortex breakdown, was an  exponential form f o r  the circumferential 

velocity profile, given by: 

2 
- r )  v O  v = - ( 1 - e  r (2 .2)  

w i t h  V o  used a s  a scaling parameter. The a x i a l  velocity was considered 

to be a constant, i .  e. u = U. Recall from the introduction that the 

existence of neutrally stable s t a n d i n g  waves occurred when 

vm/u = 1.0 

where V,,, i s  the maximum swirl velocity. I n  a d d i t i o n ,  i t  should be noted 

that the maximum swirl velocity using Squire's velocity profile i s  

V, = 0.638 Vo, a t  r = 1.12. 
* 

* 
Consistent w i t h  our previous definitions, the reference length, r , 

is  g i v e n  as: 
* 

r = 1.12. (2 .4 )  

The reference velocity is  the constant axial ve loc i ty ,  U. T h e '  charac- 

t e r i s t i c  rate o f  r o t a t i o n ,  11, i s  given as: 

Q = t i m  (v/r) = Vo. 
r+o 

Hence t h e  Rossby number i s  t h e n  given as:  

Ro = 0.57. 
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The combined vor tex considered by 3enjamin [81  i s  given by 

v = V o r  O < r <  1 

v = V o / r  l < r < R  

u = u  a l l  r 

where V, i s  a constant. 

The c r i t i c a l  condi t ion,  f o r  R = 1  and R + i s  g iven as 

( 2 . 7  1 

Vo/U = 1.92 f o r  R = 1 

’ vo/u = 1.20 f o r  R . +  = 
(2.8 1 

The case R-, corresponds t o  the combined. vortex. studied by Squire 

[7]. The case R=l corresponds to a s o l i d  body r o t a t i o n  w i t h i n  a tube 

and was a l s o  s tud ied by I t 0  e t  a l .  i16j. Tire c n a r a c t e r i s t i c  rad ius  i s  

taken t o  be the d is tance a t  which the s o l i d  body r o t a t i o n  and i r r o t a -  

t i o n a l  f l o w  a re  matched. Thus, r* i s  equal to u n i t y  and 2 f s  equal t o  

These resul t s  can be expressed i n  terms of a Rossby number a s  VO 

Ro = 0.52 

Ro = 0.83 

f o r  R = 1 

f o r  2 + 
(2.9) 

From the above analyses, i t  appears t h a t  a c r i t e r i o n  based on the Rossby 

number can be used t o  de l i nea te  the c r i t i c a l  reg ions o f  the vortex f low 

b u t  the c r i t i c a l  value depends upon the type o f  vortex flow. This  

c r i t e r i o n  was then used as a basis for  examining a v a r i e t y  o f  vor tex 

f lows. Previous computational and experimental work has been examined 

f o r  bo th  confined and unconfined flows to determine the range o f  

a p p l i c a b i l i t y  of t h i s  Rossby number parameter. 
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The cornputa t iona l  studies of Kopecky and Torrance C311, Grabowski 

a n d  Berger [331, Benay C351 and Hafez e t  a l .  C361 have been 

rein terpre ted i n  terms of the Rossby number. The ci rcumferen t i a  1 

velocity profiles used by Kopecky and Torrance and Benay are of 

exponential form, similar t o  Eq, ( 2 . 2 ) .  Grabowski and Berger C331 and 

Hafez e t  a l .  E361 express the circumferential velocity i n  terms of a 

polynomial .  B o t h  profile types asymptote t o  solid body rotation near 

the axis,  The exponential profile asymptotes t o  an irrotational flow i n  

the f a r  fi.eld. The polynomial profile i s  exactly irrotational outside a 

specific core radius. 

The circumferential velocity .profile of Grabowski a n d  Berger 1331 

and Hafez e t  a l e  C361, in nondimensional form, i s  expressed as 

0 <r  (1 v = Vr(2 - r 2 1 

v = V/r 1 <r <R 

The axial velocity profile i s  given as  

Osr < 1 u = a + (l-a)r(6-8r+3r 1 

u - 1  1 ( r  <R 

2 

(2.10) 

(2.11) 

where a i s  an adjustable parameter to  allow for  jet-l ike o r  wake-like 

profiles. The circumferential velocity i s  a maximum a t  r = J 2 / 3 ,  and i s  

equal to 1.088 V.  The characteristic r a t e  of r o t a t i o n ,  Q, i s  given a s  
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. where 5 i s  the dimensional core rad ius  a t  the i n f l ow  plane and Ua the 

dimensional f ree stream a x i a l  ve loc i t y .  The rad ius  of maximum s w i r l  

v e l c c i t y  i s  given a s  
* 

P = m 3  6. ( 2 . 1 3 )  

The c h a r a c t e r i s t i c  a x i a l  v e l o c i t y  becomes 

For the case o f  a = 1,i.e. u = U- , the Rossby number becomes 

Ro = .612/V 

where V i s  a parameter descr ib ing the c i r cumfe ren t ia  

p r o f i l e .  -The Reynolds number, based on the f r e e  stream a x i a l  

Ua, and the c h a r a c t e r i s t i c  radius, r , becomes 
* 

( 2 . 1 4 )  

(2.15) 

v e l o c i t y  

ve l  o c i  t y  , 

(2 .16 )  

where U b / w  i s  the form o f  the Reynolds number employed by Grabowski 

and Berger [331 and Hafez e t  a l .  C361. 

QI 

I n  a s i m i l a r  manner, expressions f o r  the Rossby number and Reynolds 

number can be e x t r a c t e d  f r o m  the works of Kopecky & Torrance [31] and 

Benay C351. 

r e s u l t s  a re  obtained f o r  u = constant 

Using the n o t a t i o n  employed by these authors, the f o l l o w i n g  

1 Ro = 

1.12 
E ( U  r o / v ) .  

Re = 
aD 

2 1  

(2.17 1 

(2.18) 



The r e s u l t s  o f  the previous works a r e  summarized i n  Fig.  1.1 i n  

terms o f  the Rossby and Reynolds numbers. Open symbols denote breakdown 

and closed symbols denote no breakdown. That f i g u r e  and Fig.  1.2 have 

employed an a x i a l  v e l o c i t y  c r i t e r i o n  t o  d e f i n e  breakdown. For conf ined 

f l ows  and numerical so lu t ions,  vortex breakdown i s  def ined as a f l o w  

which produces stagnat ion o f  the a x i a l  v e l o c i t y  component. F o r  
i 

unconfined flows, breakdown i s  considered t o  be a r a p i d  expansion o f  the 

vo r tex  core accompanied by a sudden dece le ra t i on  of the a x i a l  

v e l o c i t y .  A l i m i t  l i n e  ex i s t s  t h a t  separates reg ions of vor tex 

breakdown from regions t h a t  experience no breakdown. 

The computational r e s u l t s  show a Reynolds number dependence i n  the 

low Reynolds number range. From Fig. 2.1, i t  can be seen t h a t  for  

Reynolds numbers above 100, viscous e f f e c t s  appear t o  be n e g l i g i b l e  and 

i n v i s c i d  theory can be expected to g i ve  good r e s u l t s .  The dashed l i n e  

represents  the i n v i s c i d  standing wave theory developed by Squire [ 7 ]  f o r  

an exponen t ia l l y  vary ing c i r cumfe ren t ia l  v e l o c i t y  p r o f i l e .  

The experimental r e s u l t s  appearing i n  Fig.  2.1 a r e  a l l  a t  h igher  

Reynolds numbers than the numerical simula t ions.  Garg and Leibov ich 

[19] and Uchida e t  a l .  [41] made LDV measurements j u s t  upstream o f  

breakdown i n  a tube and vane apparatus. I n  the case o f  Garg and 

Leibovich,  a l e a s t  squares fit of the data was used t o  o b t a i n  

exponent ia l  p r o f i l e s  f o r  both the c i r cumfe ren t ia l  and a x i a l  v e l o c i t y  

d i s t r i b u t i o n s .  These r e s u l t s  were e a s i l y  t r a n s l a t e d  to the Rossby 

number and Reynolds number previously defined. The bubble form o f  

breakdown occurred a t  a lower Rossby number ( -  0.57) than the s p i r a l  

form (-  0.63). From the avai lab le data, i t  appears t h a t  the Rossby 

22 



Y Y  

a -  
- m  

I 
Q) 
L 

3 
CT 
v, 

- n C  n -  = a  
o m  O t  

L o  n a  
L o n  
I 

m m -  
- 0  

c 
I 

s s  
E $  

0 

c 
Q) 
E 

c., 

- I I  
' I  I 

f I 
L 
Q) 
0. 
X 
w 

m 
U 

t -  u n o  0 L 
L a J  

- a l l  cn 
Y 
m 
I 
0 

0 
L 
c3 

n 

Y 
aa 
N a 
r(l. 

Y 

% 
0 c aJ m 0 I 

L 
Q, 

o o o a a  

23 



M Z T  

II II 

N(U N(O . . 

aad 

c c  a a  
3 3  
0 0  

0 0  

v) 
L a 
U c < 

0 

L 
P 
v) 

I 
L 
x 
ad Q 
t 0 

a M 
0, 0 

0 m 
0 4 
C 
L II a w d 
a n 

0 II 

II 1 

I 1 

u 
1 

I W  

s 0 

m cv 
0 0 

0 c 

c 

0 
m a  a 

0 
0 
H 

0 

1 

a 
u 

c 
3 
0 
U 
x 
0 a 
L n 
I 

v) 

0 a 

v) 

U 

0 
v, 

- 
!E 
.c-( 

CI 

L A  
0 

Y 
m a  

rn 
0 
4 

N 
Q 

. 0 

0 0 

L 
a 
0 

c 
cn 
9 
0 c 
>r a 
e 

5 

L 

&el 
a a  I W  

L 
0 
c C .  
I 

L a  

E 7  7 c  

a n  a €  

24 



I 

number  a t  i n f low,  i n  the case  of the b u b b l e  form of breakdown, was 

a l r e a d y  below the level of the Rossby number a t  w h i c h  the s p i r a l  form o f  

breakdown occur red .  T h e  Rossby number f o r  t h e  Uchida e t  a!. work, 

o b t a i n e d  from p l o t s  of the a x i a l  and c i r c u m f e r e n t i a l  v e l o c i t y  p r o f i l e s ,  

e q u a l e d  0.64 f o r  the bubble  form of breakdown. Note the exce l len t  

agreement  between these confined experimental f lows  and the inv i sc id  

s t a n d i n g  wave a n a l y s e s  of Squ i re .  

Singh and Uberoi [42l measured the v e l o c i t y  d i s t r i b u t i o n  of a w i n g  

t i p  v o r t e x  a t  s e v e r a l  a x i a l  s t a t i o n s  a l o n g  the v o r t e x  core .  A l amina r  

flow w i n g  was used t o  gene ra t e  the vor t ex .  Their measurements 

provided  enough in fo rma t ion  t o  o b t a i n  an estimate of the Rossby number,  

( -  0,601 and Reynolds number, ( -  13000) jus t  upstream of a r eg ion  i n  

w h i c h  the a x i a l  v e l o c i t y  dec reases  r a p i d l y  t o  0.3 Urn , sugges t ing  v o r t e x  

breakdown . 
Based on Fig.  2.1 t h e  c r i t i c a l  Rossby number f o r  the symmetric form 

of breakdown f o r  t h e  t r a i l i n g  wing t i p  class o f  v o r t i c e s  i s  

approx ima te ly  0.60. The  computational resul ts i n d i c a t e  t h a t  f o r  

Reynolds numbers below loo., the value o f  t h e  c r i t i c a l  Rossby number i s  

decreased, undoubtedly due to the increased damping effects  of v i s c o s i t y  

on the wave motions. 

F i g u r e  2.2 d i s p l a y s  the Rossby number-Reynolds number rela t i o n s h i p  

f o r  l e a d i n g  edge v o r t i c e s .  The expe r imen ta l  da t a  were ob ta ined  from 

reports  by Owen and Peake [43], Anders c441 and Verhaagen and K r u i s b r i n k  

[45].  Once a g a i n ,  open symbols deno te  no breakdown and c losed  symbols 

den0 te  breakdown . 

25 



Anders [44 ]  made LDV measurements o f  a l e a d i n g  edge vo r t ex  ove r  a 

del ta  wing a t  two d i f fe ren t  angles  of a t t ack ;  19.3" and 28.9'. T h e  

V G ~ ~ ? X  produced by the wing a t  the lesser a n g l e  of  attzick d i d  n ~ t  break 

down. The  vo r t ex  produced a t  the a n g l e  o f  a t t a c k  o f  28.9' d e g r e e s  broke  

down above the delta wing. The Rossby number i s  computed a t  the same 

distance from the apex of the wing f o r  bo th  c a s e s .  

Blowing can s t a b i l i z e  a leading edge v o r t e x  and t h u s  change the 

breakdown c r i t e r i o n .  Owen and Peake [43] i n t r o d u c e d  c o r e  blowing i n t o  

v o r t i c e s  shed from d e l t a  wings a t  h i g h  a n g l e s  of  a t t ack  t o  s t u d y  i t s  

e f fec t  on vo r t ex  breakdown. The symbols i n  F ig .  2.2 r e p r e s e n t i n g  these 

d a t a  a r e  v a r i a t i o n s  based on a blowing c o e f f i c i e n t  parameter ,  CQ, a t  

f ixed s t reamwise  l o c a t i o n s  z/c=3 and z / c=4 ,  where c i s  the chord l e n g t h  

o f  the d e l t a  wing. Owen a n d  Peake s ta te  t h a t  breakdown o c c u r s  

f o r  the case Cp = 0.0, w h i l e  for the c a s e s  = 0.05 and C p  = 0.12 the bP 
f law is  s t a b i l i z e d  and no breakdown o c c u r s .  

Although the da ta  a re  sparse  and the e v a l u a t i o n  o f  t h e  Rossby 

number approximate ,  one may conclude t h a t  vortex breakdown f o r  l e a d i n g  

edge  vortices occur s  a t  a higher Rossby number than f o r  t r a i l i n g  wing 

t i p  v o r t i c e s .  T h i s  may be due to the f a c t  t h a t  the swirl v e l o c i t y  

p ro f i l e s  a re  o f  a different  type. Fa r  downstream, the flow o u t s i d e  the 

c o r e  o f  a t r a i l i n g  wing t i p  vortex i s  nearly i r r o t a t i o n a l .  For a 

- l e a d i n g  edge vo r t ex ,  the flow a t  the edge of  t h e  c o r e  i s  r o t a t i o n a l  and 

n e a r l y  i n v i s c i d .  In a d d i t i o n ,  the l e a d i n g  edge  v o r t e x  c o n t a i n s  a narrow 

v i s c o u s  subcore  where the rad ia l  g r a d i e n t s  o f  the c i r c u m f e r e n t i a l  

v e l o c i t y  a r e  ex t remely  l a r g e .  In c o n t r a s t ,  a s i g n i f i c a n t  r e g i o n  o f  

f l u i d  n e a r  the c e n t e r  of a w i n g  t i p  v o r t e x  tends t o  r o t a t e  l i ke  a r i g i d  

body . 
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No standing wave analyses of velocity profiles applicable t o  

leading edge Vortices were found d u r i n g  this investigation. That 

analysis c o u l d  predict an a n a l y t i c  Rossby number breakdown criterion for  

leading edge vortices and  would bridge the two cases,' However, based on 

experimental results,  the c r i t i c a l  Rossby number should be near u n i t y .  

I n  summary, the theoretical analyses of Squire [7] ,  Benjamin C81 

and I t o  e t  a l .  [16] have been reinterpreted t o  enable the identification 

of a criterion that predicts the existence of  axisymmetric standing 

waves based on a Rossby number. An exponential representation of the 

circumferential veloci t y  profile,  which most closely models experimental 

flows, yields a c r i t i ca l  Rossby number o f  0.57. This value i s  shown as 

a dashed line on F i g .  2.  The experimental data o f  Garg and Leibovich 

CIS], interpreted i n  terms o f  a Rossby number, shows t h a t  the spiral 

form o f  breakdown occurs when the local Rossby number f a l l s  t o  

approximately 0.63. From t h e  ava lable data, the local Rossby number 

was in i t i a l ly  below 0.63 for  the cases involving the bubble form o f  

brea kdown , Numeri ca 1 experiments revea 1 tha t the c r i  tica 1 va 1 ue of the 

Rossby number f o r  the bubble form of breakdown- becomes independent o f  

Reynolds number above Reynolds numbers o f  100. A t  lower values of the 

Reynolds number, a lower Rossby number i s  required t o  i n i t i a t e  

breakdown. 
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NUMER ICAL FORMULATION 

The governing equations descr ib ing incompressible, isothermal f l o w  

o f  a Newtonian f l u i d  are given by: 

v*'l = 0 ( 3 . 1 )  

s u b j e c t  t o  
- -  
u - g  on boundary 8. 

( 3 . 2 )  

( 3 . 3 )  

Here, Eqs. ( 3 . 1 )  and (3 .2 )  represent  the c o n t i n u i t y  equation and 

the Navier-Stokes equation's respect ive ly ,  each v a l i d  over a domain 0. 

€qua t i o n  ( 3 . 3 )  i s  a statement of spec i f i ed  v e l o c i t y  boundary c o n d i t i o n  

t o  be s a t i s f i e d  on the boundary, 8, of the domain. Higher order  

equat ions i n v o l v i n g  the v o r t i c i  ty, i, a r e  given 'by: 

- 0  

vxu = w 

OZ, - - 2 -  
E = W'VU + vv w 

0.; = 0 

wi th  a corresponding boundary condi t ion:  
b v x u .  - 

on 8. 

( 3 . 4 )  

(3.5) 

( 3 . 6 )  

(3 .7  



Equat ion  ( 3 . 4 )  represents the definition o f  vorticity, Eq. ( 3 . 5 )  the 

vorticity transport equation and Eq. (3.6) the solenoidal c o n d i t i o n  on 

the vorticity vector. Equation (3 .6)  i s  a n  identity obtained by taking 

the divergence of each Side of Eq. ( 3 . 4 ) .  The numerical scheme used t o  

solve these equations represents a n  implementation of a method described 

by Gatski, Grosch and Rose C391. The scheme i s  second order accurate i n  

time and space f o r  the vorticity and velocity variables, and i s  

independent of the local ce l l  Reynolds number. A major  advantage o f  

this  formulation i s  t h a t  boundary conditions for the pressure are n o t  

needed t o  advance the solution i n  time. (The d i f f i c u l t y  i n  specifying 

the pressure boundary c o n d i t i o n s  accurately has been discussed by 

Orszag, e t  a l .  (461.) 

Several major aspects of  th i s  algorithm can be identified. 

Equations (3.1) and (3.4) form the basis fo r  the solution t o  the 

velocity vector field when g iven  the vorticity vector field a t  any time 

level n ,  along w i t h  the velocity boundary conditions. Equation ( 3 . 5 )  i s  

uti l ized to advance the vorticity field from time level n to time level 

n + l ,  Here, the boundary condition, Eq. (3.7); is needed to  produce a 

unique solut ion t o  the higher order system of equations which are 

solutions to Eq. (3.1) and Eq. (3.2) subject to the boundary cond i t ion  

prescribed by Eq. ( 3 . 3 ) .  The so lu t ion  of Eq. (3.6) i s  used periodically 

d u r i n g  the time evolution of the flow.field t o  ensure t h a t  the vorticity 

vector remains divergence free. That i s ,  the divergence free 

requirement i s  tested a t  each time level and i f  i t  f a i l s  t o  meet i t s  

tolerance, Eq.  (3.6) i s  employed. 

For reference purposes, a brief description of the computational 

sequence follows. The physical domain i s  f i r s t  divided in to  a 
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computational region of  rectangular cel ls  R4AX x JMAX x K X A X .  A typical 

cell  i s  sketched i n  Figure 3.1. Velocities, defined a t  the centers o f  

faces, are the average of box variables defined a t  the vertices o f  

cel ls .  The  numbering scheme (1-8) fo r  the box variables i s  shown i n  

Figure 3.1. Vorticity i s  also defined a t  the center of  each cell 

face. The velocity and vorticity variables t h u s  represent average 

values over a cell face. 

Beginning w i t h  an assumed vorticity distribution, the velocities, 

u t i l i z i n g  Eqs. (3.1) and (3 .4 )  are computed a t  time level n. The 

vorticity i s  then advanced to  level n + l  using the velocities a t  t ime 

level n and  vorticity boundary conditions determined by the velocity 

components on each boundary. This vortici ty  i s  subsequently projected 

into a new vector space satisfying the requirement t h a t  the divergence 

of  vorticity be zero. Next, velocities are updated to time level n + l  

using the divergence free vorticity a t  n . and appropriate velocity 

boundary cond i t ions .  The vorticity i s  t h e n  recomputed a t  level n + l  

u s ing  t h e  updated velocity field. Repet i t ion o f  t h e  above process 

y i e l d s  a second order accurate solution a t  any wbsequent time [39]. 

Numerically, i t  i s  required that one component of the velocity 

vector be specified on each boundary cell face. All  three components of 

t h e  vor t ic i ty  vector are specified on each boundary cell face. 

Velocity €qua tions 

Assuming the v o r t i c i t y  a t  time level n i s  known,  the velocity 

components a t  level n c a n  be computed t h r o u g h  a numerical solution of 

Eqs. (3.1) and ( 3 . 4 )  where J satisfies the compatibility condition, Eq. 

(3 .6) .  F i x  and Rose [47] have shown t h a t  this compatibility condition 
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i s  a necessary cond i t i on  f o r  the overdetermined system, Eq. (3.1) and 

Eq. ( 3 . 4 )  t o  have a so lut ion.  

A f i n i t e  volume approximation t o  the c o n t i n u i t y  q u a t i e n  i s  

obtained by app ly ing  the divergence theorem t o  the i n t e g r a l  form of the 

c o n t i n u i  t y  equation. That approach resu l  t s  i n  the requirement: 

The i n t e g r a l  on the r i g h t  hand side represents  the n e t  f l u x  of mass 

i n t o  any a r b i t r a r y  f i x e d  volume. 

vh*u  , as 

It i s  convenient t o  d e f i n e  an operator 
- 

- 1  1, 

u*n  da. 
v h * u  = m (3.9 1 

Using the t rapezoidal  r u l e ,  the c o n t i m i  ty requirement can be expressed 

a s  - 
vh'u 6 ju i  i = 1,2,3 (3.10) 

)/Ax.) (where 6 i  i s  the standard di f ference operator,  Giui 3 ( u  
i +  V i u i -  1 

(3.11) 

The d i s c r e t i z e d  form of the d e f i n i t i o n  of v o r t i c i t y  r e s u l t s  f r o m  an 

a p p l i c a t i o n  of Stokes theorem. Consider a two-sided surface i n  three 

dimensions having a c losed surface C as i t s  boundary. The c i r c u l a t i o n  

of the v e l o c i t y  u around C i s  equal t o  the f l u x  o f  the c u r l  o f  u over S ,  

i .e., 

(3.12) 
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where n i s  a u n i t  normal to  the surface S. Ne can def ine a second 

operator  'h x U a s  
- 

( 3 . 1 3 )  

Using the trapezoidal  r u l e ,  the d i s c r e t e  f o r m  o f  the c u r l  operator i s  

given as 

so t h a t  

The preced i ng 

(3.14) 

(3.15) 

approximations a r e  v a l i d  over the e n t i r e  

computational domain. Addi t ional  equations a re  needed f o r  boundary 

c e i i s .  F o r  the numerical solut ion,  a O i r i c h l e t  cond i t i on  must be 

a p p l i e d  t o  any one component o f  v e l o c i t y  on a l l  boundaries, This  

condi t i o n  i s  expressed as 
I - le u*n dS = 0 (3.16) 

The numerical problem requi res the s o l u t i o n  o f  Eq. (3.10) on each 

c e l l ,  Eq. (3.14) on each c e l l  face, and Eq. (3,-16) on a l l  boundary c e l l  

faces. This  can be solved by an i t e r a t i v e  scheme due t o  Kaczmarz' 

[48]. The r e s u l t i n g  s o l u t i o n  represents a l e a s t  squares approximation 

t o  the system A i  = F, where A i s  an nxm m a t r i x  and x' and F' are m and n 

dimensional vectors respect ive ly .  When app ly ing  t h i s  scheme t o  the 

system o f  equations given by Eq. (3.10) and (3.14), each equation i s  

re laxed  independently. Therefore, n 3 1, and m i s  equal t o  the number 

o f  unknowns i n  a c e l l .  The scheme i s  de r i ved  i n  the f o l l o w i n g  

paragraph. 
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I f  2 i s  a residual and ( k )  i s  a counter, then we can write: 

- ( k + l ) -  - ( k )  - ( k )  = R i ( k )  and  u - u + v ,, where v' i s  a correction term. - ( k ) -  
Fi ii U 

/ l * L T \  - -.(k+l) - A . * u  R .  ' h r L J  - - Fi where i represents the specific equation t o  be 
1 1 .  

re la xed. 

( k )  - -(k) = R i  + A . v  

= o  

1 

( k + l )  
Ri choose 

0 = R i ( k )  + xi ; ( k )  ; define v - ( k )  = A .  T - ( ' k )  . 
1 .  

T h e n  

(3.17) 

An acceleration parameter y has been introduced i n  Eq.(3.17). 

Expressions f o r  (iiT) appear below for each of  t h e  required equations. 

1 
8(1+a2+f12) ' 

-1 
continuity (i iT ) = 

1 -1 
x vorticity (1 iT ) =zx 
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y-vortici t y  

Z-vor ti  c i  t y  
4 ( l+a' I 

where Y = Ay/& 

$ = &/Ay 

and a = AX/& 

For a Oirichlet type boundary condi t ion  

(3.20) 

( 3  ? 1 \  
.LL I 

( 3 . 2 2 )  

( 3 . 2 3 )  

( 3 . 2 4 )  

(3.35) 

To implement the Neumann c o n d i t i o n ,  a d a x  = 0 on a c e l l  face,  the 

continuity equation can be used to  write 

a v / a y  + a w a z  = o. Then 

(3.26) 

I n  summary, a projection method due t o  Kaczmart has been 

implemented to solve the overdetermined system given by Eqs. (3.11, 

(3.3) and (3.4). Tanabe (493 has shown t h a t  the method w i l l  converge 

f o r  any  system o f  linear equations w i t h  nonzero rows even i f  the system 

i s  s ingular .  

Vorticity €qua t i o n s  

The discretized form of the vorticity transport equation i s  

obtained by expressing t h e  vor t ic i ty  w i t h i n  a cell i n  terms of a se t  of 

basis functions. These functions are integrated over time and space 

resul t i n g  i n  expressions v a l i d  on cell faces. Appropriate combinations 

of these expressions result  i n  the discretized. form o f  the 'equations f o r  
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the t r a n s p o r t  O f  the vorticity.  This procedure i s  detailed by McInville 

CSOI. 

The basis set  employed by Gatski, Grosch, a n d  Rose [ S l I  f o r  the 

two-dimensional fo rmula t ion  is a solution t o  the one *dimensional form o f  

the vorticity t r anspor t  equation. These solutions are o f  the form 

w ( x , t ; a )  = exp [ax -@(a) t ]  

where B(a) = a(u  - av 1 

(3.27 1 

(3  .za) 

The three-dimensional form of  the v o r t i c i t y  transport equation 

contains the vortex stretching term ~ * V U  w h i c h  requires special 

consideration. Tne basis set no longer represents solutions t o  the 

three dimensional t r a n s p o r t  equation. T h u s ,  Gatski , Grosch and Rose 

[391  employed the transformp t i o n  

- -  

(3 .29 )  

where i s  the vorticity and i s  a transformed v o r t i c i t y .  Matrix [B,] 

i s  a 3x3 a r r a y  which relates each component of t o  the three components 

of c. When applied to  t h e  vorticity transport equation, this 

transforma t i o n  eliminates t h e  vortex stretching term. The resulting 

transformed equation i s  

- a: a t  + ;.vt P .$ (3 .30 )  

Details of the transformation appear i n  Appendix A. This form of the 

t r anspor t  equation has so lu t ions  of the type (3 .27)  and is  the equation 

t o  b e  discretized. Note that a t  time level n the transformed vorticity 
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equals the physical v o r t i c i t y .  Hence, " true" vor ti ci t y  and  

"transformed" v o r t i c i t y  are equated a t  the beginning of each time step. 

The discretized form of the transport equation has been derjved i n  

G a t s k i ,  Grosch and Rose c391. I t  takes the form, 

where, 
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(3.31) 

(3.32 a,b,c) 

(3.33 a , b , c )  

(3.34) 

(3.35) 

(3.36) 



( 3 . 3 8 )  

The f in i te  difference operators 6 and IL are defined as follows. 

n+ 42 + sn- 1/2 
S i j k  ijk ' 

0 

2 cr sn t i , j , k  

( 3 . 3 9 )  

( 3 . 4 0 )  

( 3 . 4 1 )  

( 3 . 4 2 )  

The algorithm governing the time advance o f  vorticity f r o m  time 

level n to level n+ l  ut i l izes  the vorticity a t  time level n+1/2 which i s  

g iven by 

By definition 
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( 3 . 4 3 )  

( 3 . 4 4 )  



Thus 

(3.451 

Now consider the v o r t i c i t y  a t  time l e v e l  n+l/z centered around l e v e l  

n + l .  

By d e f i n i t i o n  

Thus 

-8 ( t  - t - n+ 4 2  n+l  n+l  n+1/2 1- n+1/* 
= e  r: w (3.46) 

(3.47 1 

Sy equat ing Eqs. (3.45) and (3.48) the c o n d i t i o n  t h a t  the v o r t i c i t y  a t  

t ime l e v e l  n+l/2 be continuous i s  imposed. This  r e s u l t s  i n  a r e l a t i o n -  

s h i p  between the v o r t i c i t y  a t  t ime l e v e l  n+ l  and l e v e l  n. This 

c o n d i t i o n  i s  given as: 

(3.49) 

(3.50) 

Equation (3.49) governs the advance of v o r t i c i t y  f rom time l e v e l  n 

to  l e v e l  n+l. I f  i t  i s  assumed t h a t  the v o r t i c i t y  f i e l d  i s  known a t  

t ime l e v e l  n, then the r i g h t  hand s i d e  of Eq. (3.49) can be ca l cu la ted  

e x p l i c i t l y .  The time 'average on the r i g h t  hand s ide i s  expanded by 

us ing  Eqs. (3.33 a,b,c). The time d i f f e r e n c e  i s  expanded by using the 
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t r a n s p o r t  equat ion ( Eq. (3.31)). These expansions remove the n+ 1/2 

t ime l e v e l  f r o m  the r i g h t  hand side of Eq. (3.49). The expanded forms 

o f  €0. (3.49) us ing Eq. (3.31) and Eq. ( 3 . 3 3 a )  !3.33b) o r  !3.33c! 

r e s p e c t i v e l y ,  become: 

8 7'8 t n + l  n -n -n 
- r r P u b C n + p v 6 c  + P W b C I  e [ P x t  

x x  Y Y  z z  
- n+ l  

(Pt - ' y c  = e  

(3.52) 

(3.53) 

(3.54) 

.The only unknowns on the r i g h t  hand side i n  these equations a r e  the 

d i f f u s i o n  terms 6 ;, 6 i. and 6 i. E x p l i c i t  expressions f o r  these 
x - Y  2 

terms a r e  obtained from a se t  o f  equations, der ived from the i d e n t i t y  

+btC - n  where - t n-"2 i s  known from the prev ious time. - n- 42 t 

step. This  i d e n t i t y  i s  expanded us ing  Eq. (3.31) and Eqs. (3.33 a.b,c). 

The three r e s u l t i n g  sets o f  equations become 

pt? 

-n- li2=p :"+r(p u6 tn+p v6 tn+p wb Tn)-(h 2 p + v . c ) ~  G v t 6  & V T ~  (3.55) 
X Y z X x x  y y  z z  x x  

r: 
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Note t h a t  the i component o f  the above equations represents one "set," 

c o n s i s t i n g  of  3 scalar  equations w i t h  unknowns b X 4 ,  6 J, and 6z<I. Y I  

S i m i l a r l y  f o r  the j and k components. - 
The d e t a i l s  o f  the s o l u t i o n  o f  these equat ions fo r  6 a ,  6 $, 6 5 

X Y  z 
by u t i l i z i n g  Eqs, (3.32 a,b,c), appears i n  Appendix 8 .  The advance t o  

t ime l e v e l  n+ l  i s  i m p l i c i t .  Equations (3.521, ( 3 . 5 3 )  and (3.54) are 

reduced t o  a t r i d i a g o n a l  system which can be solved using e i t h e r  

a1 t e r n a t i n g  d i r e c t i o n  imp1 i c i  t ( A D I )  o r  successive over r e l a x a t i o n  (SORI 

methods. The reduct ion of the equations to t r i d i a g o n a l  form has been 

developed i n  Appendix B. 

To implement an A01 solut ion,  a Thomas a l g o r i t h m  [SZI i s  f i r s t  . 

a p p l i e d  along each line o f  constant jk f o r  the x d i r e c t i o n  sweep. This 

g i ves  the three components o f  v o r t i c i t y  a t  the centers  o f  the x-constant 

c e l l  faces. E x p l i c i t  i n  t h i s  sweep a r e  the three components o f  

v o r t i c i t y  occurr ing on the y=constant and the t - cons tan t  faces. For the 

f i r s t  i t e r a t i o n  through x d i r e c t i o n  sweeps, the values o f  the v o r t i c i t y  

components are a t  time l e v e l  n, The Thomas a l g o r i t h m  i s  then app l i ed  i n  

the y d i r e c t i o n  and t d i r e c t i o n ,  r e s u l t i n g  i n  the updated components o f  

v o r t i c i t y  on the y=constant and z-constant faces respec t i ve l y .  I n  

general,  i t  i s  found t h a t  s u f f i c i e n t  ref inement o f  the s o l u t i o n  i s  

achieved by c y c l i n g  through each sweep d i r e c t i o n  three times. 
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Zecall t h a t  the velocity coefficients of the advection terms are 

lagged by one time level during these cycles. To achieve second order 

accuracy i n  time i t  i s  necessary t o  update these velocities t o  the 

current time level of the vorticity, a n d  then recompute the vorticity 

using these updated velocities. I t  is  also necessary t o  recompute the 

r i g h t  hand side o f  Eq.  (3 .49)  af ter  recycling through the velocity 

equations and before recomputing the vorticity . This requirement 

results from the f a c t  t h a t  the n+l time level of the exponential 

transformation appears i n  Eq. (3.49).  Repeated a p p l i c a t i o n  of the above 

procedure yields i n  the vorticity and velocity fields a t  later times. . 

Alternately, the i m p l i c i t  system may be solved u s i n g  a SOR type 

The advantage of t h i s  approach is  t h a t  when on ly  a few cycles are 

required, the SOR iteration wi l l  be faster computationally. I n  

a d d i t i o n ,  a residual can be identified and used a s  a criterion for  

convergence. The residual i s  defined as the difference between the l e f t  

side and r i g h t  side o f  each individual equation o f  the tridiagonal 

system. The other aspects o f  the solution procedure are identical w i t h  

t h e  method employing t h e  Thomas a lgor i thm.  In a l l  the subsequent 

computations,  the time steps were kept small enough to  ensure t h a t  the 

CFL s tabi l i ty  criterion 1533 was not violated. 

Helmholtz Projection 

In general , the vortici'ty resulting from the f ini te  difference 

solution t o  the vort ic i ty  transport equations does not  satisfy the 

requirement t h a t  the vorticity vector be divergence free. This i s  due 

to  the f a c t  t h a t  the divergence free c o n d i t i o n  i s  a vector identity and  
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i s  not part of the Navier-Stokes equations. Hence, the divergence free 

c o n d i t i o n  i s  n o t  required i n  the derivation of  the v o r t i c i t y  transport 

eqmt im.  Thss, dn ini t ia l ly  c!ive.rgence free field my d r i f t  f r o m  the 

requirement due to roundof f error or d i  scre ti za ti on error. 

A previously discussed requirement f o r  the numerical solution of 

the velocity field was the c o m p a t i b i l i t y  c o n d i t i o n  0.~0. If .  the vector 

resulting from the time advance of the transport equation does n o t  

satisfy t h i s  c o n d i t i o n ,  i t  must be projected o n t o  the vector space of  

divergence free vorticity. A well known property of  any  vector f i e l d  i s  

the fact  t h a t  i t  can be decomposed i n t o  a n  irrotational f i e l d  and a 

- 

divergence free field according to the Helmholtz projection: 

- + v x z  ( 3 . 5 8 )  
i rro ta ti ona 1 divergence free 

Here, x represents a scalar function and  c' . a vector function. To 
- extract  the divergence free part of the vector. W, take the divergence 

of Eq. (3.58) t o  get: 

- 2  v * w =  v x (3.59) 

Equation (3.61) can be used to solve f o r  x , subject t o  the boundary 

c o n d i t i o n  - ax = 0 on 8. This boundary condi t ion is utilized t o  ensure an 
that  the component o f  vottici t y  norma 1 t o  the boundary i s  not a1 tered. 

The divergence free component, 7 x 2, of the o r i g i n a l  vector, w, i s  

given by 

- 

- -  
~ x C - w - V x  (3.60) 
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An a l t e r n a t e  approach t o  enforcing the so lenoida l  c o n d i t i o n  on the 

v o r t i c i t y  vector  can a l s o  be derived. Equation (3.59) can be reduced t o  

the f o l l o w i n g  se t  of  f i r s t  order d i f f e r e n t i a l  equations: 

- ax 
- b x  

- ax - a y  
- ax r - -  az 

where - ax - - 0 on the boundary. The unknowns i n  t h i s  system a r e  the an 

s c a l a r  q u a n t i t i e s  p, q. r and x. 

o r i g i n a l  vector  are then given by: 

The divergence free components o f  the 

c ' v  x = w1 - p (3.65) 

(3.66) 

(3.67 1 

The d i s c r e t i z a t i o n  of equations (3.61) t o  (3.64) i s  descr ibed by 

Rose C541. The f i n i t e  d i f f e rence  forms are: 

- -  
bXp + 6 q + 6zr = V O W  

Y 

PxP = 6xx  

(3.68) 

(3.69) 

(3.71) 
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AX 2 -9L 2 
cLxx - bxP = P Y X  g byq ( 3 . 7 2 )  

( 3 , 7 3 1  

T h e  averaging and difference operators are  

previously for the discretization of the t r a n s p o r t  equation. 

identical to  those defined 

These equations have been solved us ing  the Kaczmart (481 iteration 

scheme which was discussed i n  reference t o  t h e  solution o f  the velocity 

f i e l d .  Recall that the Kaczmarz scheme requires the eva1ua.tion of the 

expression A . ( A . A . )  R. f o r  each of the discretized equations, t h e  

subscript i denoting a specific equation. The expressions f o r  zi and 

a , b )  respectively. 

-T - -T -1 
1 1 1 1  

n i  0 b ~ e  given  be;& for Eqs. (3.66) ro (3 .71)  as  Eqs. (3 .74 a , b )  t o  (3.80 

( 3 . 7  5b 

1 '1 -1 1 A = (- 
3 2' 7*.zy* y' ( 3 . 7 6 a )  
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1 1 -Ax Ax Ay -Ay 
2 '  2 '  a a 8 a - -  - S  -D -# -1 

1 1  
(3.78a) 

Each o f  the above equations i s  relaxed independently over a l l  i n t e r i o r  

and boundary c e l l s  using the Kaczmarz i t e r a t i o n  scheme repeated below. 

- T - -  ( k )  - ( k )  - y Ai (AiAi) Ri i ' X  
- (kill 
i x (3.80) .. 
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The vector  i s  composed o f  combinations o f  the va r iab les  p,q,r, and 

depending on the equation being relaxed. For instance, when i = l ,  

which corresponds t o  Eq. (3.68) the vector  ;! i s  given by 

(3.81) 

The boundary cond i t i ons  a r e  handled i n  a s i m i l a r  manner. I t  i s  

r e q u i r e d  t h a t  the normal component o f  v o r t i c i t y  on a boundary remain 

unchanged a f t e r  the Helmholtz pro ject ion.  Thus, on constant x boundary 

ax - 0, and on constant  z faces - = 0, on constant y boundary faces, - - 
boundary face, - ax - - 0. 

a x  
ax  aY 

Hence, the boundary cond i t i ons  a r e  az  

p = o  on i=l, and imax 

q = o  on j = l ,  and jmax 

r = O  on k-1, amd kmax 

(3.82) 

(3 .83  1 

( 3 . 8 4 )  

These values are r e s e t  a f t e r  each i t e r a t i o n  through the Xaczmarz update, 

s ince i n  general, the boundary values o f  p , q  and r change a f t e r  the 

r e l a x a t i o n  o f  Eqs. (3.68) to ( 3 . 7 3 ) .  

An a l t e r n a t e  method, mentioned i n i t i a l l y ,  i s  to solve the Poisson 

equat ion for X ,  and then compute Ox. This can be done using an SOR 

i t e r a t i o n  scheme. The divergence of v o r t i c i t y  i s  given a t  the center of 

a c e l l ,  so t h a t  x should be computed a t  c e l l  centers  wh i l e  O x  should be 

computed a t  c e l l  faces. To f a c i l i t a t e  coding, i t  i s  des i rab le  t o  

express the Poisson equat ion i n  terms of the orthogonal, c u r v i l i n e a r  

coo rd i  na tes 
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The transformed Poisson equation takes the f o r m  

The computational plane consists o f  rec tangu la r  c e l  Is w i t h  uni form 

spacing i n  each coord inate d i rec t i on .  This a l l ows  one t o  use simple 

unweighted f i n i t e  d i f f e rence  expressions. Equation (3.85) i s  

d i  scre ti zed u s i  ng centra 1 d i  f ferences f o r  both f i r s t  and second o rde r  

der ivat i .ves.  The d i s c r e t i z e d  form can be solved us ing an SOR scheme 

f o r  the v a r i a b l e  x . It i s  then necessary to compute O x  a s  fo l lows. '  

(3.86) 

In  the d i s c r e t i z e d  form, the f i r s t  order d e r i v a t i v e s  a re  represented by 

c e n t r a l  dif ferences. On boundaries, ax/an = 0 , so Eq. (3.86) i s  

computed f o r  i n t e r i o r  c e l l s  only. If the divergence f r e e  components a r e  

represented by , then I1 I I* 

w ' ~  = w3 - aX/at  

Pressure €qua ti on s 

(3.87 ) 

(3.87b 1 

( 3 . 8 7 ~ )  

One advantage o f  the v o r t i c i  t y - ve loc i  t y  formula t i o n  i s  t h a t  the 

pressure does n o t  appear e x p l i c i t l y  i n  the equat ions o f  motion. 

Therefore, the v e l o c i t y  and v o r t i c i t y  are obtained independent from the 
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pressure f i e l d .  I n  Appendix C, i t  i s  shown t h a t  pressure s a t i s f i e s  a 

Poisson equation, whose r i g h t  hand o r  f u n c t i o n  s ide i s  an expression 

c o n t a i n i n g  the v e l o c i t y  gradients. T h e  numerir;r! s o ! u t i m  c f  t t ; i s .  

equat ion i s  analagous t o  the s o l u t i o n  o f  the Poisson equation, Eq. 

(3.59). 

Neumann condi t ions,  r e s u l t i n g  f r o m  the momentum equations, were 

spec i f i ed  on a l l  boundaries. A specia l  requirement o f  these boundary 

cond i t i ons ,  due t o  an a p p l i c a t i o n  o f  Green's theorem, i s  discussed 

below. 

The i n t e g r a l  form of the Poisson equat ion fo r  pressure can be 

developed f rom the momentum equations and w r i t t e n  as: 

j 3~ dv = j sdv ( 3 . 8 8 )  

where the source term 5 i s  given a s  

Through an a p p l i c a t i o n  o f  Green's theorem, a r e l a t i o n s h i p  between the 

source term and the boundary f l u x  i s  g iven as: - 

SdV = 1% aa (3.90) 

Here, n i s  taken a s  p o s i t i v e  when d i r e c t e d  outward f r o m  the boundary 

u. I n  general, the f i n i t e  dif ference e q u i v a l e n t  of Eq. (3.90) w i l l  n o t  

be s a t i s f i e d  i d e n t i c a l l y .  As a r e s u l t ,  the numerical s o l u t i o n  o f  the 

Poisson equat ion f o r  pressure need n o t  converge. 

A convergence requirement can be developed f o r  the Poisson equa t i o i r  

by imposing an e r r o r  condi t ion,  E, def ined as 
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The s t ra tegy  i s  to d i s t r i b u t e  t h i s  e r r o r  over the boundary f l u x  terms 

aP/an, which represent  the boundary cond i t ions .  I n  t h i s  sense, the 

f i n i t e  d i f fe rence analog of Eq. (3.90) i s  s a t i s f i e d .  
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SPECIFICATION OF THE PROBLEM - 
BOUNDARY CON0 I T I O N S  

Ma thema t i c a l l y ,  the Navier-Stokes equations a re  a se t  of  three 

e l l i p t i c ,  second order p a r t i a l  d i f f e r e n t i a l  equations. This means t h a t  

e i t h e r  a O i r i c h l e t  or  Neumann cond i t i on  must be s p e c i f i e d  on a l l  c losed 

boundaries. I t  i s  these boundary cond i t i ons  t h a t  d i s t i n g u i s h  a l l  the 

d i f f e r e n t  f low pat terns occurr ing i n  nature. Therefore, i t  i s  extremely 

impor tan t  t h a t  these c o n d i t i o n s  be chosen prcper ly .  

The purpose o f  the present  study was to model the evo lu t i on  o f  a 

c l a s s  o f  v o r t i c e s  s i m i l a r  t o  those shed f r o m  the wing t i p s  o f  

a i r c r a f t ,  Although these vo r t i ces  genera l l y  occur i n  pa i r s ,  on ly  a 

s i n g l e  vortex was considered. Observations reveal  t h a t  these v o r t i c e s  

a re  roughly axisymmetric with an apprec iab le  a x i a l  v e l o c i t y  ( e i t h e r  a 

d e f e c t  o r  an excess v e l o c i t y  r e l a t i v e  t o  the fkee stream, depending on 

the wing loading ( 5 5 1 ) .  I n - a d d i t i o n ,  far  downstream o f  the wing the 

f l o w  ou ts ide  o f  the core i s  near ly i r r o t a t i o n a l .  

Experimental measurements of a t r a i l i n g  wing t i p  vortex c421 and 

v o r t i c e s  produced i n  a tube and vane apparatus (271 revealed t h a t  the 

c i rcumferen t i a l  v e l o c i t y  p r o f i  l e  i s  we1 1 represen t cd  by the two- 

dimensional Burgers vortex. The a x i a l  v e l o c i t y  appears . to  decay 

exponen t ia l l y  i n  the r a d i a l  d i r e c t i o n  ( f rom the vo r tex  c e n t e r l i n e ) ,  

reaching a constant value a t  large radius.  These observat ions can be 

represented by the fo l l ow ing  dimensional form f o r  the s w i r l  and a x i a l  

v e l o c i t y  p r o f i l e s .  
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2 -a r 
2v 
- 

( 4 . 2 )  u = U  + U e  
Q O  

Here, K i s  a c o n s t a n t ,  wh ich  i s  proportional t o  the circulation, "a" i s  

an adjustable constant associated w i t h  the vortex core diameter and  v i s  

the kinematic viscosity. U- i s  the free stream a x i a l  velocity and  U o  i s  

an a x i a l  velocity excess (or deficit)  occurring a t  the vortex center- 

line. Profiles similar to these were employed in numerical studies o f  

vortex breakdown by Kopecky a n d  Torrance C311 a n d  Benay C351. 

In  the above equations, length was nondirnensionalized by r', where 

r* = ( 4 . 3 )  

and velocities were nondimensionalized by the a x i a l  velocity, U*, 

occurring a t  the r a d i u s ,  o f  maximum swirl velocity, r * . Formal ly ,  the 

q u a n t i t y  r'is t h e  distance i n  which the a x i a l  vorticity e-folds once. 

In fact ,  the radius of maximum swirl velocity- i s  nearly equal to r*. 

Through an i terat ive process one obtains the relation 
* 

r = 1.12 r' 

The nondimensional forms o f  Eqs. (4.1) and ( 4 . 2 )  become 

2 
1 1  -r 

v =  - (1-e ) e 1.12 RO r 

2 
1 + 

1 + 0.285i 
u =  

52 

( 4 . 4 )  

('4.5 1 

( 4 . 6 )  



* *  
Nhere the RossSy number i s  given a s  20 = U / r  9 a n d  = Uo/UQ. Here, 

9 i s  defined as the solid body rotation rate obtained from 

(4.7 i 

The a x i a l  component of  vorticity, for the velocity d i s t r i b u t i o n  given by 

2 -a r 
aK w = - e  

x v  ( 4 . 8 )  

By defining R as  the reference vorticity,  the above equation can be 

written i n  nondimensional form as  
2 -r 

w = 2 e  
X 

The circumferential vorticity component i s  given as 

2 -a r 
ar 2v 

we = 7 Uoe 

which in nondimensional form becomes: 

2 
-r 

Ro re 2.24; 

1.0 + 0.285; 
W f  e 

( 4 . 9 )  

(4.10) 

(4.11) 

These expressions represent t h e  form of the vortex employed in the 

present study from w h i c h  the ini t ia l  and boundary cond i t ions  were 

derived. The in i t ia l  and boundary conditions a t  i n f low are discussed 

f i r s t ,  followed by the outflow conditions and conditions a t  large 

r a d i u s .  

The specification of the velocity vector, Eq. (3 .31 ,  o r  i t s  

gradient on a l l  closed boundaries i s  required t o  solve the primitive 

variable form of the Navier-Stokes equations, Eq. ( 3 . 2 ) .  The numerical 

solution of the vorticity transport equation, Eq. (3.5), requires the 
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specification of three components of v o r t i c i t y  on the boundaries. The 

numerical solution of the "velocity equations", Eqs. (3 .1)  and  ( 3 . 4 ) ,  

requires the specification of a single component of the ve loc i ty  vector 

(or gradient) on the boundaries, The general procedure i s  to  specify 

the primitive variables on a boundary and translate this specification 

t o  a f in i te  difference form consistent w i t h  the above requirements of 

the a 1 gori  thm.  

A 1  t h o u g h  quasi-cylindrical vortices are best described i n  a 

cylindrical coordinate system, the a lgo r i thm,  a s  constructed a t  th i s  

p o i n t ,  was written i n  terms of Cartesian coordinates. Therefore., 

references t o  b o t h  coordinate systems are required i n  order t o  interpret  

the influence of the boundary  conditions on the solution. In the 

fo l lowing  discussion i t  i s  assumed t h a t  the i n i t i a l  vortical 

distribution was cylindrical (i.e.,  no variations i n  the a x i a l  direction 

and no r ad ia l  velocities). The vortex was aligned a long  the x axis and  

the . r o t a t i o n  was such t h a t  the axial component of  vorticity was 

positive. 

A t  inflow, the specified primitive variables were: the a x i a l  

velocity component, u, the y derivative of the w, and the z derivative 

of the v components of velocity, ( 1 .  e. u ,  - aw These c o n d i t i o n s  

musS be interpreted w i t h  respect to  the a lgor i thm.  The axial velocity 

component, u,  was held fixed a t  inflow when solving the "velocity 

equations." T h i s  allowed for  direct specif icat ion of wake-like o r  j e t -  

l ike profiles. The v and w components of velocity were specified to  the 

extent t h a t  they took on the values determined by the component of 

v o r t i c i t y  normal to  the i n f  ow boundary. This led to  the specification 

of bw/ay and b v l a z  a s  the add i t iona l  primitive variable boundary 

az' $ 0  

54 



conditions, since these derivatives can be combined t o  give the axial 

component of vorticity. Note further that the a x i a l  component of  

vorticity can be oriented i n  t he  same direct?'on i n  b o t h  cylindrical and 

Cartesian coordinate systems. Therefore, the specification of  w i n  t h e  

Cartesian coordinate system (of  the algorithm) can be interpreted a s  

specifying the vorticity d i s t r i b u t i o n  of Burgers' vortex, since aw/ay 

and  av/az were obtained analytically from Eq. (4.5). 

X 

The "vorticity solver" required the specification of  two additional 

z. boundary conditions. These were chosen a s  w and w 
Y 

I n  nondimensional form, w and  w can be written: Y z 

(4.12) 

(4.13) 

Since u is  a n  analytic boundary condition a t  inflow, the derivatives 

au/az and aolby were known. I t  was necessary to  calculate the deriv- 

a t ives  awlax and a v l a x  numerically since they could  no t  be derived from 

the analytic boundary conditions. F i r s t  order .forward differences were 

used to compute these derivatives. T h e  resulting boundary conditions 

were assumed to be a t  time level n (present time). 

A different strategy had to  b e  used to specify t h e  outflow boundary 

conditions since the solution here was unknown and  highly dependent on 

t h e  f low upstream. W i t h  respect to the  "velocity solver", the condition 

W a y  + awlat  = constant (4.14) 

was chosen. T h i s  i s  a statement regarding the divergence of t h e  

velocity i n  t h e  plane perpendicular to the vortex axis. The constant 
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equals zero for a ste3dy flow i n  the l i m i t  as the Rossby number 

approaches zero [401. 

F l u x  condi t ions  wore chose!? fcr  the vorticf ty boundary conditions 

a t  outflow. Here, the effects of viscosity were neglected and the 

Dirichlet type boundary cond i t ions  were obtained assuming a time advance 

of 
0; - - - = w*ou. D t  ( 4 . 1 5 )  

The velocities a n d  vorticit ies on the r i g h t  hand side, o f  E q .  (4.15) were 

taken a t  time level n. The time derivative was discretized using f i r s t  

order forward differences. The tesul t i n g  discretized equation was then 

solved f o r  the vorticity vector a t  time level n + l .  

A t  the large radius boundaries given by planes o f  constant j and k, 

the a x i a l  component of velocity was specified. T h i s  was done so t h a t  

the effects of an  external pressure gradient, ana lagous  to  the 

experimental investigations, could be modeled. 

A t  these boundaries the three components of v o r t i c i t y  were 

specified u s i n g  the Cartesian coordinate equivalents of Eqs. (4.9)  and 

(4 .11 ) .  For a uniform inf low profile, Eq. (4 .11)  shows the w and 

w components of vo r t i c i ty  are zero. By evaluating Eq.  (4.11) a t  large 

r a d i u s ,  one can see that the axial component approaches zero asymptot- 

ically.  Therefore, the radial boundaries were placed a t  a radius which 

Y 

Z 

was large enough t o  ensure t h a t  vort ic i ty  d i d  not ,  t h r o u g h  convection o r  

d i f f u s i o n ,  contaminate the boundary conditions. 

To summarize, the specification of t h e  boundary conditions f o r  b o t h  

the "velocity solver" and the "vorticity solver" are represented i n  

- Table 4.1. 



Table 4.1 

Summary o f  V e l o c i t y  and V o r t i c i t y  Boundary Condit ions 

Ve loc i  ty  Sol ver  

Sur face  Speci f i ca ti on 

( a )  i n f l o w  u=gi  ven 

(b) out f low avlay + a w / a z  = 0 

( c )  . r a d i a l  boundaries u=gi  ven. 

V o r t i c i  t y  Solver 

Surface 

( a )  i n f l o w  

( b )  out f low 

S p e c i f i c a t i o n  

2 
w = 2 e-' 

X 

- 
( c )  r a d i a l  boundaries w = given  
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The discretized .form of the governing equations were solved over a 

48~28x28 g r i d  (47  cell's i n  the x-direction, 27 ce l l s  i n  the y-direction, 

27 ce l l s  i n  the z-direction) on a Cyber 2 0 5 .  Ccurse g r i d  (52x2Sx23) 

s o l u t i o n s  were computed on a CDC 830 a t  Old Dominion University t o  help 

identify relevant parameter ranges. Since the difference scheme i s  

compact, g r i d  clustering i s  easily performed, Grid points are usually 

clustered i n  regions where large gradients occur. I n  studies of  vortex 

breakdown, this includes the region immediately upstream of the 

breakdown and the vortex core region. Immediately upstream o f  

breakdown, large gradients of  the a x i a l  velocity occur as the f l u i d  

approaches the stagna t i o n  p o i n t .  Large gradients o f  the circumferential 

velocity are present w i t h i n  t h e  core. 

Refinement of t h e  mesh i n  t h e  a x i a l  d i r e c t i o n  "25 accomplished 

us ing  the transformation: 

where f3 i s  a stretching parameter and Ex i s  the length of the domain i n  

the x direction, More po in t s  are clustered near x=O a s  u+l, leu<=+. 

The coordinate varies u n i f o r m l y  from 9 (corresponding to the x=O g r i d  

point) to  1 (corresponding t o  the x = i X  g r i d  p o i n t ) .  

s 

To cluster poin ts  near t h e  v o r t e x  centerline ( y  and z coordinates) 

t h e  following transform t ion  was used: 
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where 

and e i s  a s t r e t c h i n g  parameter. 

y=y,. 

g i v e n  by 6 
the y=O.O g r i d p o i n t )  t o  1 (cor responding  t o  the y=6 

I n c r e a s i n g  E clusters more p o i n t s  n e a r  

I f  e=O, a uniformly spaced g r i d  r e s u l t s .  The domain l e n g t h  i s  

v a r i e s  un i formly  from 0 ( co r re spond ing  t o  

Y 

T h e  c o o r d i n a t e  Y *  
g r i d p o i n t ) .  

T h e  above t r a n s f o r m a t i o n s  can be found i n  Anderson, Tannehill  and 

Pletcher T h e  v a l u e s  of the g r i d  parameters  f o r  the s o l u t i o n s  

g e n e r a t e d  i n  this work were given a s :  

- 
hx = i6.0, Q = i.15 x d i r e c t i o n  g r i d  

y d i r e c t i o n  g r i d  

z d i r e c t i o n  g r i d  

= 5.0, 5 = 10.0, E = 4.5 

= 5.0, iz = 10.0, E = 4.5 
yC Y 

zC 

These  resulted i n  t h e  fo l lowing  minimum cel l  l e n g t h s :  

hx = 0.1303 

Ay = 0.1778 

A2 = 0.1778. 

The d i s t r i b u t i o n  of  the c e l l s  w i t h i n  t h e  domain and the o r i e n t a t i o n  

o f  a t y p i c a l  v o r t e x  is  shown i n  Fig. 4.1. 
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I 

RESULTS AND 01 SCUSS I O N  

Results of two tes t  cases are presented, I n  the f i r s t  case, 

(Ro=0.625, Re=225), the vortex was imbedded i n  a uniform external f low 

w i t h  no external pressure gradient. The flow produced by this Rossby, 

Reynolds number ca se, a 1 ong w i  t h  numerous other cases, predicted an  
I 
I 
I . axisymmetric breakdown w h i c h  occurred a t  the inf low boundary. T h a t  
I '  
I 

result  was similar to the results obtained by previous investigators 
I 
I [31 ,33 ,35 ,361 .  The questions which arise from breakdown near in f low 
~ 

I 

have been discussed earlier i n  this work. In  order to alleviate this 

problem, a different type flow was computed, (Ror0.8, Re=225), i n  w h i c h  

I the vortex was imbedded i n  a decelerating free stream. This, i n  

essence, modeled the effects of an  adverse pressure gradient on the 

streamwise development of the vortex. The resulting breakdown occurred 
I 
I 

I 

away from the inflow boundary. I n  a d d i t i o n ,  a multiple celled breakdown 

I region was observed, in accord w i t h  experimental observations [27]. I n  

b o t h  cases, the parameter, 6 ,  defined i n  Eq. ( 4 . 6 ) .  equaled 0.0. T h u s ,  
, - 
I 

I 
l a uniform axial velocity profile was specified a t  inf low,  I n  the 

I fo l lowing  discussion, detailed results of the above two tes t  cases are  
I displayed i n  the form of line and contour p l o t s .  Several other test 

cases that were run w i t h o u t  graphic o u t p u t  are discussed. Finally, the 
I 

results of tests performed t o  ascertain the effects of domain length and 

g r i d  size on the temporal evolution of the solution are discussed. 
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Case 1 - Uniform Free Stream Ax ia l  V e l o c i t y  

,3ased on previous numerical studies, breakdown of t r a i l i n g  wing t i p  

v o r t i c e s  occurred a t  Rossby numbers o f  approximately 0.6 o r  l ess  when 

the Reynolds number was greater than 100. This behavior i s  shown 

c l e a r l y  i n  Fig. 2.1. The i n i t i a l  numerical s imu la t i on  i n  the present  

study was completed i n  an attempt t o  v e r i f y  these r e s u l t s  and t o  

determine the ef fects  o f  asymmetries on the so lu t i on .  The t e s t  was 

performed a t  a Rossby number of 0.625, which was chosen because i t  was 

near the d e l i m i t i n g  l i n e  f o r  vortex breakdown d isp layed i n  Fig.  2.1. 

Flows computed by previous i nves t i ga to rs  a t  Rossby numbers considerably 

below the d e l i m i t i n g  l i n e  i n  Fig. 2.1 appear t o  become d i s t o r t e g  and 

non-physical near the i n f l o w  boundary. A Reynolds number of  225 was 

chosen t o  minimize the apparent damping e f f e c t s  o f  v i s c o s i t y  a t  very low 

Reynolds numbers. The r e s u l t s  o f  t h i s  s imu la t i on  a re  d isp layed i n  Figs.  

5.1  t o  5.15 f o r  the time l e v e l  t0126.8. Unless otherwise noted, the 

contour p l o t s  a r e  i n  the x-y plane along the c e n t e r l i n e  o f  the vortex.. 

S o l i d  contour l i n e s  denote p o s i t i v e  values ( o r  zero) and dashed l i n e s  

denote contours w i t h  negat ive values. I n  a l l  p l o t s ,  the contour l e v e l s  

a r e  evenly spaced. P l o t s  o f  p a r t i c l e  traces, vor tex l i n e s  and v e l o c i t y  

vectors  a r e  a lso  displayed. They were obtained u s i n g  PLOT3D, a three- 

dimensional c o l o r  graphics program implemented on an I r i s  c o l o r  graphics 

workstat ion.  These p l o t s  are p ro jec t i ons  of three-dimensional vector  

f i e l d s  onto a two-dimensional surface. 

V e l o c i t y  vectors, p ro jec ted  onto the mid plane (z=5) ,  a re  d isp layed 

i n  Fig. 5.1. Observe t h a t  the i n t e r n a l  s t r u c t u r e  o f  the breakdown 

r e g i o n  i s  seen to c o n s i s t  o f  a s ingle c e l l ,  nea r l y  symmetric about the 

v o r t e x  cen te r l i ne .  F l u i d  i s  entrained through the top h a l f  o f  the r e a r  
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of  the  breakdown region. The f l u i d  appears t o  exi t  the bubble fron the 

lower h a l f .  I n  a d d i t i o n ,  two s t a g n a t i o n  points  a long  the axis can be 

d i  s t i  n g u i  shed. 

F i g u r e  5.2. represents particle traces. Nine white colored traces 

were started a t  the inflow plane. These traces were a l l  started from a 

radial position within the rotational po r t ion  o f  the core. In a d d i t i o n ,  

a trace was started w i t h i n  the breakdown region i t s e l f ,  and i s  

represented by the red line. A third trace was started a t  the inf low 

plane b u t  outside the core in the irrotational region of the f low.  T h a t  

trace i s  blue. Particle traces satisfy the equations a i / d t = i ( x , t ) .  I-f 

a particle passes through the p o i n t  ( x , y , z )  a t  time t = O  the solution i s  

of the form ; = i ( x , y , t , t )  wh ich  traces o u t  the pathline a s  t increases. 

The PLOT30 g raph ic s  package is  limited to  instantaneous particle traces, 

i.e., the velocity components must be time independent, Therefore, i n  

this sense, the traces can be considered a s  streamlines, pathlines o r  

streaklines because in a steady flow they a l l  coincide. The tangents t o  

these traces are everywhere parallel to  the velocity vector. 

The w h i t e  traces shown i n  Fig, 5.2 can be seen to approach the 

breakdown region and diverge - never entering the cel l  i t se l f .  These 

traces also reveal t h a t  t h e  diameter of the vortex core has increased 

b e h i n d  the breakdown region. The red trace, released from w i t h i n  the 

bubble, is  seen to spiral  about w i t h i n  a single cel l .  I t  eventually 

exi ts  the region from behind, closer to  the axis radius t h a n  the w h i t e  

a traces, The b l u e  trace spirals around the outside of the vortex core i n  

the irrotational region and i s  essentially unaffected by the breakdown. 

Contours of the axial velocity are displayed i n  F i g ,  5.3. This 

p l o t  clearly reveals a breakdown region w h i c h  occurs i n  close p r o x i m i t y  
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t o  the i n f l o w  boundary. The r e c i r c u l a t i o n  reg ion is bounded by the area 

w i t h i n  the innermost s o l i d  contour l i n e  ( t h e  0.0 l e v e l  contour) .  The 

breakdown bubble appears symmetric abnut the w r t e x  center? ine.  

F igu re  5.4 represents the wx ( a x i a l )  component o f  v o r t i c i t y .  For 

t h i s  f i g u r e  and a l l  succeeding v o r t i c i t y  contour f i g u r e s  ( i n c l u d i n g  w 

and w contours),  the v o r t i c i t y  has been scaled by the Rossby number. 

For  example, w = 1.12 Ro(bw/ay-bv/az). An i n t e r e s t i n g  fea tu re  o f  t h i s  

f low i s  the i n t e n s i f i c a t i o n  of the a x i a l  component of v o r t i c i t y  

occu r r i ng  j u s t  a f t  o f  the breakdown region. ifere, the a x i a l  v o r t i c i t y  

has increased by approximately 25% over the maximum value a t  i n f l ow .  

This  i s  due t o  vortex s t r e t c h i n g  which r e s u l t s  from a r a p i d  a c c e l e r a t i o n  

o f  the a x i a l  v e l o c i t y  component. W i th in  the breakdown reg ion  i t s e l f ,  

the a x i a l  component o f  v o r t i c i t y  i s  small. This i n d i c a t e s  t h a t  w i t h i n  

the breakdown region the r a d i a l  g rad ien ts  o f  the c i r c u m f e r e n t i a l  

v e l o c i t i e s  a r e  small. Downstream of the breakdown reg ion  the contour 

l i n e s  become p a r a l l e l ,  reveal ing a r e t u r n  t o  a q u a s i - c y l i n d r i c a l  f low. 

I n  the absence,of breakdown, the v o r t i c i t y  contour l i n e s  over the e n t i r e  

r e g i o n  would appear near ly  pa ra l l e l .  

Y '  

Z 

X 

Contours o f  w and ut v o r t i c i t y  a r e  d isp layed i n  Figs. 5.5 and 5.6, 

r e s p e c t i v e l y .  The 0.0 l e v e l  contours a r e  n o t  displayed, because outs ide 

the core o f  the vortex, l a rge  regions e x i s t  where the v o r t i c i t y  f i e l d  i s  

Y 

near zero. Therefore, p l o t t i n g  zero l e v e l  contours r e s u l t s  i n  a l a r g e  

number o f  undesirable and confusing l i n e s  i n  the f a r  f i e l d .  The p l o t  

represented by Fig. 5.5 i s  i n  the x-z plane since the w component o f  

v o r t i c i t y  i n  the x-y plane i s  nearly zero. The w and oZ components a r e  

due e n t i r e l y  t o  per turbat ions o f  the base f l o w  s ince the i n i t i a l  ( t - 0 )  

d i s t r i b u t i o n  possessed only  an ax ia l  component of v o r t i c i t y .  

Y 

Y 
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Fig. 5.3 Contsurs o f  c o n s t a n t  a x i a l  velocity. Contour levels range 
from -0.1 (dashed) to 0.9 I n  Intervals of 0.1. 

Ffg. 5.4 Contours o f  cons tan t  a x i a l  v o r t i c i t y ,  wx. Contour levels 
range from 0.25 to 2.5 In i n t e r v a l s  of 0.25. 



Fig.  5 .5  Contours of constant w vorticity.  Contour levels range f rom 
Y -1.25 to 1.2s in  intervals of 0.25. 

. I  

Ffg. 5.6 Contours of  constant ut v o r t l c i t y .  
-1.25 to 1.25 I n  intervals o f  0.25. 

Contour levels range f rom 

68 



Vortex lines are shown i n  Fig. 5 . 7 .  These are lines whose tangent 

i s  everywhere para l le l  to the vorticity vector. The lines are three- 

dimensional and were obtained using the I r i s  color graphics work-t ta t icn 

and PCOT3D. As was the case with the particle traces, the vortex lines 

mus t  be considered t o  be time independent. The radial locations of  the 

lines a t  the inflow plane correspond to the radial locations of the 

white particle traces i n  Fig.  5.2. Note t h a t  the magnitude o f  t h e  

v o r t i c i t y  cannot be inferred from these lines. A t  i n f l o w ,  the l i nes  are 

oriented i n  the x d i rect ion,  revealing t h a t  o n l y  the a x i a l  component of 

v o r t i c i t y  exists. Upon entering the breakdown region the lines become 

oriented nearly perpendicular to the vortex ax i s .  This signifies a 

transfer of vorticity to the w , a n d  w components, and i s  controlled 
2 

by the vortex stretching and bending  terms i n  the vorticity transport 

equation. Af t  o f  the breakdown region, the vortex lines are oriented 

primarily in t h e  axial direction, i n d i c a t i n g  a transfer o f  vorticity 

back to the axial component. 

Figure 5.8 i s  a line p l o t  of the integral I $ G2 dV as a f u n c t i o n  

of  ax ia l  location, where ;*/2 i s  defined a s  the enstrophy. The 

integration was car r ied  o u t  over c o n t r o l  volumes defined by O<yclO, 

O<t<10, AX. The resulting numerical values were then divided by the 

volume over w h i c h  the integra t ion was'performed. When the enstrophy i s  

integrated over a volume o f  fluid i t  i s  a n  appropriate measure of the 

total amount o f  vorticity w i t h i n  the f l u i d  C401. The enstrophy i s  

maximum w i t h i n  the breakdown region a t  the a x i a l  loca t ion  x=3. The 

enstrophy decreases and remains nearly constant downstream of  the 

bubble. 
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F igu re  5.9 i s  a l i n e  p l o t  of the volume i n t e g r a l  o f  the m a t e r i a l  

d e r i v a t i v e  of  enstrophy a s  a funct ion o f  a x i a l  l oca t i on .  The i n t e g r a l  

i s  g iven a s  - / 7 w dv which provides a measure of  the r a t e  o f  change 

o f  the t o t a l  amount of  V o r t i c i t y  i n  a s p e c i f i c  volume o f  f l u i d ,  V .  

Here, V i s  enclosed by a surface 9 moving w i t h  the f l u i d .  The p l o t  

d i s p l a y s  a x i a l  v a r i a t i o n  o f  total enstrophy, along w i t h  the r a t e  o f  

change provided by s t re t ch ing ,  v i s c o s i t y  and the f l u x  o f  enstrophy 

across the boundaries o f  the con t ro l  volume. The meaning o f  these terms 

can be explained by expanding the time r a t e  of  change o f  enstrophy 

i n t e g r a l  i n  terms of volume i n t e g r a l s  con ta in ing  Eu le r ian  d e r i v a t i v e s .  

The r e s u l t ,  der ived i n  Appendix 0, can be w r i t t e n  a s :  

d 1 -2 
d t  

By examining the r i g h t  hand side o f  Eq. (5.1) i t  can be seen t h a t  the 

t o t a l  amount o f  v o r t i c i t y  i n  a mater ia l  volume can change as a r e s u l t  o f  

vo r tex  s t r e t c h i n g  and viscous ef fects.  The f i r s t  term on the r i g h t ,  the 

s t r e t c h i n g  term, i s  p o s i t i v e  if the f l u i d  element i s  extended i n  the 

d i r e c t i o n  o f  the l o c a l  vortex l ines.  The second term reveals  t h a t  the 

e f f e c t  o f  v i s c o s i t y ,  neglect ing d i f f u s i v e  t ranspor t  across the 

boundaries, i s  t o  decrease the t o t a l  enstrophy o f  the f l u i d .  In 

general,  i t  i s  poss ib le  f o r  the e n t i r e  r i g h t  hand side o f  Eq. ( 5 . 1 )  t o  

be p o s i t i v e ,  leading to an increase i n  the enstrophy, o r  total amount o f  

v o r t i c i t y ,  i n  the f l u i d .  

The volume i n t e g r a l s  on the r ight-hand s ide of Eq. (5.11, which a r e  

p l o t t e d  i n  Fig. 5.9, were evaluated us ing  t rapezoidal  r u l e  i n t e g r a -  

t i on .  The i n t e g r a  t i o n s  were performed over volumes def ined by 
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O(y~10,  O<zclr) ,  Ax. The p l o t t e d  values represent volume averages, i.e., 

the numerical values resulting from the trapezoidal rule integration 

were divided by the volume over w h i c h  the integration was performed. 

From a Lagrangian  p o i n t  o f  view the rate of change of enstrophy of  a 

material volume i s .  due to both temporal changes a n d  changes due t o  

s p a t i a l  movement of the volume. In a steady flow,  the temporal changes 

are non-existent. Since the breakdown i s  a n  unsteady phenomena, 

temporal changes my be significant a l t h o u g h  i t  i s  unlikely t h a t  they 

are dominant.  Whenever the r a t e  of  change o f  enstrophy is negative, the 

t o t a l  amount o f  v o r t i c i t y  contained i n  a material volume passing through 

t h a t  location i s  decreasing. By examining F i g .  5.9 i t  i s  apparent t h a t  

the distribution of  enstrophy w i t h i n  the f l u i d  i s  c o n t r o l l e d ,  for the 

most part, by vortex stretching. Viscous effects appear to  be i m p o r t a n t  

o n l y  w i t h i n  the breakdown region. The d i f f u s i o n  of  enstrophy i n t o ,  o r  

o u t  o f ,  a material volume i s  negligible. The maximum and min imum values 

of  the to t a l  rate of change of enstrophy occur a t  a x i a l  locations 

corresponding to the stagna t i o n  p o i n t s ,  These points approximately 

define the f r o n t  and rear of the bubble. 
* 2 

A contour of the pressure f ie ld ,  non-dimensionalized by pU , i s  

shown i n  Fig. 5.10. Beginning a t  the inflow boundary and near the 

centerline, the f l u i d  encounters an  adverse pressure gradient w i t h  a 

corresponding decrease i n  t h e  a x i a l  velocity. M i  t h i n  the breakdown 

region i t s e l f ,  t h e  pressure remains nearly constant. The f l u i d  i s  

accelerated beyond the breakdown region, and this i s  manifest i n  the 

form of a weak favorable pressure gradient. Downstream, the pressure 

contours are nearly parallel. Since t h e  vortex was imbedded i n  a free 

7 3  



stream w i t h  a constant a x i a l  velocity, the pressure a l o n g  the radial 

boundaries i s  nearly constant. 

The relationship between the centerline axial velocity and the 

centerline pressure i s  shown i n  Fig. 5.11. Except for a sho r t  distance 

w i t h i n  the breakdown region, increasing a x i a l  velocities correspond to ' 

favorable pressure gradients and vice versa. 

Figure 5.12 i s  a c o n t o u r  p l o t  of the dimensionless total pressure, 
2 2 q / 2  + p.  In a steady inviscid f low,  q / 2  + p remains constant a l o n g  a 

streamline. Therefore, the above contours can be t h o u g h t  of a s  

npproxima t i n g  stream1 ines. Along a stream1 ine, wherever the dynamic 

pressure ( q  / 2 )  i s  h i g h ,  the static pressure ( p )  i s  low and vice versa. 

The rate of  change o f  energy i s  plotted i n  F i g .  5.13. The rate of 

change o f  t o t a l  energy is  g iven  a s  the sum of the rates of  change o f  

internal and kinetic energy. The rate of change o f  kinetic energy i s  

given a s  the sum of the rates of change due to b o t h  pressure and  viscous 

forces. For a n  isothermal, incompressible f l u i d  i n  a Lagrangian 

framework, the rate . o f  change of t o t a l  energy o f  3 specific inaterial 

volume i s  given as:  

2 

The interpretation o f  the above material derivative i s  analagous t o  the 

interpretation given earlier for the enstrophy equation. The  rate of 

change o f  internal energy i s  due solely to  the dissipation of  mechanical 

energy t h r o u g h  viscous effects'. Here, .the shape o f  the f l u i d  element i s  

distorted. '  This i s  a n  irreversible oss of energy, manifested i n  the 

form of heat. T h i s  i s  accounted for  the t h i r d  term on the right hand 
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F i g .  5.10 Isobar p l o t s :  contour  levels v a r y i n g  from -0.9 to  0.1 i n  
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F i g .  5.12 Contours o f  total pressure: contour levels o f  -0.5 t o  0.7 
i n  fntervals of.0.l. 
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s ide  o f  Eq. ( 5 . 2 ) .  The e f fec t  of the f i r s t  and second terms (pressure 

and viscous stresses, respec t i ve l y )  i s  t o  change the k i n e t i c  energy o f  a 

f l u i d  element. The pressure forces a r e  r e v e r s i b l e  changes i n  energy. 

The k i n e t i c  energy per u n i t  volume i s  p l o t t e d  as a f u n c t i o n  o f  

a x i a l  d is tance in .F ig .  5.14. Fo l lowing a s l i g h t  decrease near i n f l o w ,  

k i n e t i c  energy remained constant i n  the a x i a l  d i r e c t i o n .  

F igures 5.15 a-d represent v e l o c i t y  p r o f i l e s  a t  four  d i f f e r e n t  

a x i a l  l oca t i ons .  Axial  ( X I ,  transverse ( y )  and spanwise ( z )  v e l o c i t i e s  

a r e  p l o t t e d  as a funct ion of the t ransverse coordinate ( w i t h  a 

t r a n s l a t i o n  o f  the o r i g i n  t o  the vor tex cen te r l i ne ;  y=5.0, 2-5.0). 

Since the spanwise l o c a t i o n  o f  the data p o i n t s  was along the vor tex 

c e n t e r l i n e ,  the v e l o c i t y  components i n  a Cartesian system can be 

transformed e a s i l y  t o  the corresponding components i n  a cy1 i n d r i c a l  

system. The a x i a l  l o c a t i o n  of the p r o f i l e s  i n  Fig. 5.15a i s  s l i g h t l y  

upstream o f  breakdown (x=0.27). F igu re  5.1Sb represents p r o f i l e s  from 

w i t h i n  the breakdown reg ion  (x.2.52). F igu re  5 . 1 5 ~  represents p r o f i l e s  

near the a f t  stagnat ion p o i n t  (xt3.85). The p r o f i l e s  p l o t t e d  i n  Fig. 

5.15d a r e  a t  an a x i a l  l oca t i on  downstream o f  the breakdown reg ion  

(x=9.52). Upstream o f  breakdown, the spanwise ( s w i r l )  v e l o c i t y  

represents  the two-dimensional Burgers vor tex t o  a good approximation. 

The f l ow  i s  no longer quasi-cy1 i n d r i c a l  , since non-zero t ransverse 

( r a d i a l )  v e l o c i t i e s  appear near the c e n t e r l i n e .  These v e l o c i t i e s  a r e  

due t o  the divergence o f  the f l o w f i e l d  away from the a x i s  as the 

s tagnat ion p o i n t  i s  approached. The a x i a l  v e l o c i t y  shows approximately 

a 20% d e f i c i t  near the a x i s .  A t  an a x i a l  l o c a t i o n  w i t h i n  the breakdown 

region,  decay o f  the spanwise ( s w i r l )  v e l o c i t y  a t  l a r g e  r a d i i  ( o u t s i d e  

the r e c i r c u l a t i o n  zone) i s  inverse ly  p r o p o r t i o n a l  t o  the radius.  Wi th in  
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the  r e c i r c u l a t i o n  tone, a shor t  annular  {egion i s  observed i n  which the 

spanwise ( s w i r l  1 v e l o c i t y  i s  constant. . The t ransverse ( r a d i a l )  

v e l o c i t i e s  a r e  near zero fo r  a l l  t ransverse ( r a d i a l )  loca t ions .  

I n  F ig.  5 . 1 5 ~ ~  the transverse ( r a d i a l )  v e l o c i t i e s  have become 

s i g n i f i c a n t ,  and a r e  near l y  -the same m g n i t u d e  as the t ransverse 

( r a d i a l )  v e l o c i t i e s  i n  Fig.  5.15a, b u t  a re  of opposi te  sign. This 

s i g n i f i e s  t h a t  the a x i a l  loca t ion  i s  near the a f t  p o r t i o n  of the bubble, 

s ince the s t reaml ines a re  converging. 

I t  i s  revealed i n  Fig.  5.15d t h a t  the f low downstream of the 

breakdown i s  quas i - cy l i nd r i ca l ,  w i t h  a s m a l l - a x i a l  v e l o c i t y  d e f i c i t .  I t  

i s  apparent t h a t  the vor tex  core diameter, def ined by the rad ius  o f  

maximum s w i r l  ve loc i t y ,  i s  greater downstream o f  the breakdown reg ion  

than upstream. 

The minimum a x i a l  v e l o c i t y  va r ies  w i t h  time as shown (on a semi-log 

p l o t )  i n  Fig.  5.16. Note t h a t  the a x i a l  v e l o c i t y  decays exponen t ia l l y  

t o  approximately 30 percent  of i t s  o r i g i n a l  magnitude (over  a t ime 

pe r iod  o f  60 u n i t s ) .  An exponential decay o f  the v e l o c i t y  f i e l d  i s  

i n d i c a t i v e  o f  a viscous t ime scale, By dimensional analyses, the 

v iscous t ime 'sca le  f o r  the f l o w  i s  given as t = 1.12 Re, which fo r  t h i s  

case, equals approximately 100 time u n i t s .  

Case 2 - Decelerat ion o f  the Free Stream 
Axia l  Ve loc i t y  

The breakdown j u s t  described was very s i m i l a r  t o  breakdowns 

computed i n  several prev ious inves t iga t ions .  I n  an a t tempt  t o  a l l e v i a t e  

the problem o f  the non-physical r e s u l t s  and breakdown occur r ing  near the 

i n f l o w  boundary, an a d d i t i o n a l  vor tex flow was computed, Here, the 

vo r tex  was imbedded i n  a decelerat ing f ree  stream. The purpose o f  t h i s  
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case was t o  f o r c e  t h e  l o c a l  Rossby number t o  d e c r e a s e  a s  the flow 

evo lved  i n  the a x i a l  d i r e c t i o n .  The Rossby number a t  i n f low was 0.8 and  

the Reynolds number was 225. The f r e e  stream a x i a i  v e l o c i t y  was 

l i n e a r l y  d e c e l e r a t e d  from 1.0 to 0.55 over t h e  r ange  xr1.43 to x=16.0, 

t h u s  du/dx=0.03. The  results a r e  p l o t t e d  i n  F i g s .  5.17 t o  5.32. The  

d a t a  i n  F igs .  5.18 to 5.32 i s  a t  time level t ~ 8 1 . 2 8 .  F i v e  d i f f e r e n t  

time levels a r e  r e p r e s e n t e d  i n  Fig. 5.17. 

V e l o c i t y  v e c t o r s ,  r e p r e s e n t i n g  time levels t ~ 8 1 . 2 8 ,  85.27, 87.45, 

89.63 and 91.82 a r e  d i s p l a y e d  i n  F i g .  5.17 a -e ,  r e s p e c t i v e l y .  The  

g e n e r a l  appea rance  of the bubble i s  one of asymmetry. A t  time t=81.28 

the i n t e r n a l  structure o f  the breakdown c o n t a i n s  two major c e l l s ,  o r  

vortex r i n g s ,  r o t a t i n g  i n  oppos i t e  d i r e c t i o n s  a b o u t  their  respective 

a x i s .  T h e  a f t  vo r t ex  r i n g  i s  i n c l i n e d  t o  t h e ' x - a x i s .  F l u i d  enters the 

bubb le  from n e a r  t h e  downstream end, through t h e  side of the bubble,  and  

exi ts  the bubble  a t  the same axia-1 l o c a t i o n  b u t  on the o p p o s i t e  side. 

The i n c l i n a t i o n  o f  the a f t  vortex r i n g  a l s o  a p p e a r s  to be r e l a t e d  to t h e  

exchange o f  f l u i d  i n  the bubble. T h e  most forward  s e c t i o n  o f  the r i n g  

c o r r e s p o n d s  to the l o c a t i o n  o f  f l u i d  i n f l u x ,  whereas the a f t  s e c t i o n  o f  

the r i n g  c o r r e s p o n d s  t o  the l o c a t i o n  where f l u i d  , i s  emptied. In 

a d d i t i o n ,  t h e  v e l o c i t i e s  a r e  cons ide rab ly  g r e a t e r  i n  the a f t  p o r t i o n  o f  

the bubble  than i n  the forward portion. The  l e n g t h  to diameter r a t i o  o f  

the bubble  i s  approx ima te ly  1.75. The maximum d i a m e t e r  of the b u b b l e  

o c c u r s  approx ima te ly  0.7L u n i t s  downstream from t h e  f r o n t  s t a g n a t i o n  

p o i n t  (where L i s  the l e n g t h  of the bubb le ) .  

The v e l o c i t y  v e c t o r s  f o r  the subsequent  time l e v e l s  i n d i c a t e  t h a t  

t h e  flow w i t h i n  the bubble  i s  unsteady. In a d d i t i o n  t o  r o t a t i n g  a b o u t  

the x-axis ,  the i n d i v i d u a l  c e l l s  w i t h i n  the b u b b l e  t e n d  t o  merge and 
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(C) t = 87.45 

( d )  t = 89.63 
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( e )  t = 91.82 

F i g ,  5.17 Projected v e l o c i t y  v e c t o r s  over the i n t e r i o r  o f  the 
a,b,c,d,e,  breakdown r e g i o n  a t  d f f f e r e n t  tfm l e v e l s .  
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separate, a n d  change i n  strength a n d  location. The location a t  which 

f l u i d  enters the bubble appears to have shifted towards the back for. the 

time levels t=89.63 a n d  t=91.82. I n  a d d i t i o n ,  a t  these time levels,  the 

forward recirculation region has lost  considerable coherence, 

Particle traces are displayed i n  F i g .  5.18. I n  this figure, and 

f o r  a l l  remaining figures, the time level represented i s  t=81.28. An 

examination of the different contour plots  a t  other time levels shows 

t h i s  time level to  be representative of the solution. The nine white 

traces were started a t  the inflow plane from a radial position within 

the rotational region of the vortex. A single blue trace was started a t  

the in'flow plane, b u t  from a radial position i n  the irrotational region 

of the flow. The red trace was started from a position w i t h i n  bubble i n  

the forward cell .  The yellow trace was started from w i t h i n  the " t a i l "  

region of the breakdown. The w h i t e  traces seem to define the general 

shape of the bubble. One o f  these traces enters the forward cel l ,  

spirals about ,  then exits.  This seems t o  indicate t h a t  most of the 

fluid approaching the bubble from the f r o n t  i s  deflected around .it. The 

red trace reveals t h a t  the fluid particles in the forward cell .remain i n  

t h e  forward cell u n t i l  they are forced o u t  of the bubble .  The red trace 

leaves the breakdown region from the side i n  the forward ha l f  o f  the 

b u b b l e .  The yellow trace reveals t h a t  fluid enters the breakdown region 

from the a f t  section of the bubble. The spiral traced o u t  by this line 

(as  i t  enters the bubble) i s  i n  the opposite direction t o  the spiral 

traced o u t  by the blue line. The yellow line spirals a b o u t  i n  the rear  

cell  before exiting the bubble from the outer edge. Note t h a t  the red 

trace never enters the a f t  cell and t,he yellow trace never enters the 

forward cell .  This indicates t h a t  the exchange o f  f l u i d  between the 
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forward and a f t  

s p i r a l s  about the 

F igu re  5.19 

sec t i on  o f  the bubble i s  minimal. The b lue t race  

breakdown e s s e n t i a l l y  unaffected. 

i s  a contour p l o t  o f  the a x i a l  tsmponent o f  v e l o c i t y .  

The breakdown reg ion  i s  located near the center o f  the computational 

domain. The r e c i r c u l a t i o n  region - i s  de f ined  by the ou te r  0.0 l e v e l  

contour l i n e .  Immediately w i t h i n  t h i s  reg ion  a re  negat ive valued 

contour  l i n e s .  I n t e r i o r  t o  these negat ive valued contour l i n e s  a r e  

a d d i t i o n a l  p o s i t i v e  .valued contour l i n e s .  Thus, along the c e n t e r l i n e  o f  

the bubble there e x i s t s  a region i n  which no f low reve rsa l  occurs. The 

contour l i n e s  i n t e r s e c t i n g  the top and bottom o f  the domain i n d i c a t e  a 

d e c e l e r a t i n g  ex te rna l  f l o w  (which was imposed by the boundary 

c o n d i t i o n s ) .  

A contour p l o t  o f  the a x i a l  component of  v o r t i c i t y  (sca led by the 

Rossby number) i s  shown i n  Fig. 5.20. The v o r t i c i t y  decreases 

cont inuously  as the stagnation p o i n t  i s  approached. I n  the forward 

p o r t i o n  o f  the breakdown region, the a x i a l  component o f  v o r t i c i t y  i s  

n e a r l y  zero. This  i nd i ca tes  t h a t  the r a d i a l  g rad ien ts  o f  the s w i r l  

v e l o c i t y  a re  small. I n  contrast, the a f t  Sect ion o f  the breakdown 

r e g i o n  i s  character ized by high l e v e l s  of  wx v o r t i c i t y  along the ax i s .  

Furthermore, the r a d i a l  gradients o f  wx v o r t i c i t y  i n  t h i s  reg ion  a r e  

high. Note t h a t  the v o r t i c i t y  i s  negat ive i n  the reg ion of the bubble 

corresponding t o  the approximate l o c a t i o n  of the a f t  vortex r i n g .  

F igu res  5.21 and 5.22 are  contour plots  of the w and wZ components 

v o r t i c i t y  respec t i ve l y .  The 0.0 l e v e l  contours a r e  n o t  displayed, as 

was the case i n  Figs. 5.5 and 5 . 6 .  These components a re  due e n t i r e l y  t o  

Y 

p e r t u r b a t i o n s  o f  the base f low since a t  t ime t=O.O the only  non-zero 

v o r t i c i t y  component was wX. The asymmetric, Wo c e l l e d  s t r u c t u r e  o f  the 
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F i g .  5.19 Contours of  constant  a x i a l  v e l o c i t y .  Contour l e v e l s  range 
from -0.3 to 0.9 i n  I n t e r v a l s  o f  0.1, 

Fig. 5.20 Contours o f  constant a x i a l  v o r t i c i t y ,  w X .  Contour l e v e l s  
range from -.0.25 to 2.5 i n  i n t e r v a l s  of 0.25.. 



Fig. 5.21 Contours of constant w vort ic i ty .  Contour l eve l s  range 
Y from -1.50 to 1.50 in f n t e r v a l s  of 0.25. 

) )  \----- 

Fig. 5.22 Contours o f  constant wZ vort ic i ty .  Contour leve ls  range 
from -1.50 to 1.50 i n  i n t e r v a l s  o f  0 .25 .  
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bubble i s  revealed i n  these contours. In a d d i t i o n ,  p o i n t s  on the axes 

of the two vortex rings can be identified. Since the vorticity of the 

two rings i s  of opposite sign, they  rotate in opposite directions a b o u t  

their respective axes. The maximum vorticity levels i n  these two rings 

i s  approximately equal. A possible third vortex r i n g  can be seen i n  the 

outer region of the forward portion o f  the bubble. This ring rotates i n  

the same direction as the a f t  most vortex r i n g .  

Vortex lines are shown i n  Fig. 5.23. The r a d i a l  locations of these 

l ines a t  the inf low plane correspond t o  the locations of the white 

particle traces a t  inflow. In the approach flow the vortex lines are 

oriented i n  the x-direction. The transfer of v o r t i c i t y  from the x t o  

the y a n d  z components takes place as the f i r s t  stagnation p o i n t  is 

approached . Different orientations o f  the v o r t i c i t y  vector are 

observable w i t h i n  the bubble, Near the centerline o f  the bubble, the 

vorticity vector i s  oriented pr imar i ly  i n  the a x i a l  directicn. Near the 

outer regions, the orientation i s  mostly i n  the circumferential 

direction. Downstream of t h e  breakdown, the vorticity vector is  

oriented i n  the ax ia l  direction, b u t  w i t h  a superimposed small 

u n d u l a t i o n .  

A line p l o t  of the integral of $ Gz a s  a function of axial l o c a t i o n  

appears i n  F ig .  5.24. This figure shows t h a t  the enstrophy per u n i t  

volume o f  fluid remains nearly constant i n  the streamwise direction 

u n t i l  the breakdown region i s  encountered. Here, large gains i n  

enstrophy are realized. Downstream of the breakdown region, the 

enstrophy level returns to the levels present upstream of breakdown. 

The volume integral o f  t h e  material derivative of enstrophy i s  

plotted i n  F ig .  5.25. The distribution of  enstrophy w i t h i n  the 
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breakdown region i s  affected significantly by b o t h  vortex stretching a n d  

viscous a c t i o n .  The effect  of viscosity is  t o  offset  the gains i n  

enstrophy due to stretching. The  enstrnphy changes due t o  d i f f i i s j o n  

across the boundaries of a spec i f ic  material volume are ins ign i f i can t .  

The a x i a l  l oca t ion  a t  which the enstrophy i s  a e xi mum agrees w i t h  the 

location i n  where the rate of change of enstrophy i s  zero. 

Contour lines of pressure are shown i n  F i g .  5.26. The min imum 

pressure a t  a n y  a x i a l  location occurs a long  the centerline of the 

vortex, w i t h  the absolute m i n i m u m  occurring a t  i n f l o w .  A strong adverse 
/ 

gradient i s  encountered by t h e  fluid a s  i t  approaches the breakdown 

region, Within the forward part of the breakdown region, the pressure 

i s  nearly constant, A local  minimum occurs i n  the a f t  po r t ion  o f  the 

bubble. This p o i n t  corresponds to  the loca t ion  o f  m i n i m u m  axial 

velocity. The pressure d i s t r i b u t i o n  i s  asymmetric, This may correspond 

t o  the orientation of the a f t  vortex r i n g ,  

The pressure and axial velocity a l o n g  the vortex centerline are  

plotted i n  F ig .  5.27. A strong adverse pressure gradient extends from 

the inflow boundary to the a x i a l  loca t ion  ~13.2 ,  Corresponding to  t h e  

f i r s t  s t agna t ion  p o i n t .  From x.3.2 to  x-7.2 a decrease i n  pressure is  

accompanied by an increase i n  the a x i a l  velocity. The a x i a l  velocity 

then decelerates rapidly even t h o u g h  the pressure continues to  

decrease. Downstream of t h e  breakdown region, the center1 ine a x i a l  

velocity i s  accelerated toward i ts  free stream value. S t a g n a t i o n  poin ts  

are observed a t  a x i a l  loca t ions  x=3.0, 5 . 5 ,  8 . 3 .  and 12.3. 

Since the external flow was decelerated i n  the a x i a l  d i r ec t ion ,  i t  

was expected t h a t  a corresponding adverse pressure gradient would 

exist .  For clari ty,  the pressure variation a long  the t o p  cornputa t i o n a l  
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boundary (y=10.0, 2~5.0) i s  plotted as a funct ion of ax ia l  location i n  

F i g .  5.28 using a magnified scale. A r a p i d  change i n  the slope i s  

apparent a t  x=1.5.  This corresponds t o  the approximte a x i a l  l o c a t i o n  

i n  which the imposed deceleration o f  the free stream axial velocity 

begins. The pressure then increases linearly u n t i l  the a x i a l  l o c a t i o n  

corresponding t o  the onset of breakdown i s  reached. Downstream from 

this location the pressure decreases and then increases. This i s  due to 

the curvature of the streamlines (displayed i n  F i g .  5.29). Experimental 

wal l  pressure distributions measured by Sarpkaya [ZS] i n  a tube and vane 

appa ra tus  behaved i n  a similar manner. Note t h a t  the maximum values of  

d p / d x  a l o n g  the computational boundary a r e  much smaller i n  mgnitude 

t h a n  the values of  dp /dx  occurring w i t h i n  the vortex core. 

Figure 5.29 i s  a contour p l o t  of t h e  total pressure, q 2 /2  + p. As 

p r e v i o u s l y  mentioned, where viscous forces are insignificant and the 

flow i s  steady, these lines can be considered a s  streamlines. I n  this 

sense, the a f t  recirculation cell i s  clearly visible.  . 

The volume integral of the miterial derivative of energy i s  plotted 

in Fig .  5.30. The interpretation of the various lines follows from the 

description of 5.13. Note t h a t  the rate of change of energy due t o  

pressure work follows the total r a t e  of change o f  energy almost 

exactly. These lines appear on top  of one another i n  F i g .  5.30. As i s  

required, the rate of change of internal energy i s  positive t h r o u g h o u t  

the flow. The mgnitude o f  t h i s  change i s  small when compared t o  the 

rate of change of kinetic energy t h r o u g h o u t  most o f  the region. The 

p l o t  shows t h a t  the rate of change of  kinetic energy i s  due primarily t o  

differential  pressure forces acting on a material volume. The viscous 

forces responsible f o r  changing the kinetic energy a r e  small. 
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T h e  i n t e g r a l  of the volume ave raged  k i n e t i c  energy  has been 

computed a n d  p l o t t e d  a s  a func t ion  of a x i a l  l o c a t i o n  i n  Fig.  5.31. T h e  

kinetic energy  i s  observed  to’dectease by approx ima te ly  50% between the 

in f low plane and the a x i a l  l o c a t i o n ,  x=8.0. Downstream o f  this p o i n t ,  

the kinet ic  energy i n c r e a s e s  s l i g h t l y  and then  remains constant. 

Axial  t r a n s v e r s e  ( r a d i a l  I D  and spanwise ( s w i r l  velocity prof i les  

a t  f o u r  d i f f e r e n t  a x i a l  l o c a t i o n s  are p l o t t e d  i n  Fig.  5.32 a-d f o r  time 

level t=81.28. The a x i a l  l o c a t i o n  o f  the p r o f i l e s  i n  F ig .  5.32a i s  

’ upstream of breakdown (x=0.41). T h e  p r o f i l e s  i n  F igs .  5.32b and 5 . 3 2 ~  

represent a x i a l  l o c a t i o n s  w i t h i n  the breakdown reg ion  (x=5.46 and 

x=7.36, r e s p e c t i v e l y ) .  P r o f i l e s  from. downstream of  the breakdown reg ion  

a r e  p l o t t e d  i n  Fig.  5.324 (x=13.92). For r e f e r e n c e  purposes, the f i r s t  

s t a g n a t i o n  p o i n t  i s  l o c a t e d  a t  x=3.0. Upstream of breakdown, the 

spanwise ( s w i r l  1 v e l o c i t y  p r o f i l e  approx ima tes  the two-dimensional 

Burge r s  vo r t ex ,  The r a d i a l  v e l o c i t y  is  small and t h e  a x i a l  v e l o c i t y  

p r o f i l e  n e a r l y  uniform. Wi th in  t h e  breakdown r e g i o n ,  as r e v e a l e d  i n  

F i g s .  5.32b and 5,32c, t h e  flow i s  no l o n g e r  symmetric. Transverse 

( r a d i a l )  v e l o c i t i e s  a r e  s i g n i f i x a n t  and the Spanwise (swirl) v e l o c i t y  

profiles no l o n g e r  approximate Burgers vortex. A t  bo th  a x i a l  l o c a t i o n s  

w i t h i n  the breakdown, the axial  velocity p r o f i l e s  have a local  maximum 

and two local  m i n i m a .  The p r o f i l e s  i n  Fig.  5.324, downstream of  the 

breakdown r e g i o n ,  r evea l  a large ax ia l  v e l o c i t y  d e f i c i t  near the v o r t e x  

centerline. The  spanwise (swirl) v e l o c i t y  p r o f i l e s  r e v e a l  a s o l i d  body- 

like r o t a t i o n  near the centerline. A t  the edge of the c o r e ,  the maximum 

spanwise  ( s w i r l )  velocities a r e  c o n s i d e r a b l y  less than values o c c u r r i n g  

upstream of the breakdown reg ion .  
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A comparison of t h i s  computed breakdown s t r u c t u r e  ( a t  t=81.28) w i t h  

mean streamline and a x i a l  ve loc i t y  p r o f i l e s  constructed by Fa le r  and 

Le ibov i ch  E271 using exper imental ly measured data is shown in Fig. 

5.33. The p r o f i l e s  given by Faler and Leibov ich are for  the upper h a l f  

o f  the bubble only. Although the Reynolds number f o r  the experimental 

case was of order 1000, the ove ra l l  q u a l i t a t i v e  agreement regarding the 

s t r u c t u r e  of the bubble i s  excel lent .  

0 the r  Ca ses 

Several a d d i t i o n a l  t e s t  cases were computed t o  determine the e f f e c t  

o f  a j e t - l i k e  a x i a l  v e l o c i t y  p r o f i l e  on vo r tex  breakdown. The r e s u l t s ,  

a l t hough  n o t  a v a i l a b l e  i n  the f o r m  o f  l i n e  and contour p l o t s ,  w i l l  be 

discussed f o r  the purposes of  comparison. 

Several a d d i t i o n a l  cases were computed i n  which the vortex was 

For two of these cases the Rossby imbedded i n  a uni form external  flow. 

number a t  i n f l o w  was 0.80 and the Reynolds number, 225. The a x i a l  

v e l o c i t y  p r o f i l e  a t  i n f l o w  was given by Eq. ( 4 . 6 ) .  For the two t e s t  

cases, 5 ,  was chosen as 1.0 and 0.5, r e s p e c t i v e l y .  

‘The purpose o f  these two computations was t o  determine the e f f e c t  

o f  v iscous d i f f u s i o n  on the flow, as measured by the l o c a l  Rossby 

number. I n  both cases, the l o c a l  Rossby number increased i n  the 

streamwise d i r e c t i o n  as the f l o w  evolved. This  was because the r a t e  o f  

decrease of  the s o l i d  body r o t a t i o n  o f  the vo r tex  (near the c e n t e r l i n e )  

was g rea te r  than the r a t e  o f  decrease o f  the a x i a l  v e l o c i t y  component 

( a t  the r a d i u s  o f  maximum s w i r l  v e l o c i t y ) .  The rad ius,  r , increased 

s l i g h t l y  i n  the streamwise d i rect ion.  Breakdown d i d  n o t  occur, s ince a t  

* 

103 



1 -////=- 

6 I 

r l  1 I I I I 1 I I I I I I I 1 

0 2 4 6 a IO' 12 I4 

I ems 
6 -  - 
5 -  

4 -  

2 -  

1 -  

I -  

& - 
QS 2 s  4 6 a 10 s 12 14 

Fig. 5.33 Comparison of the numerical solution ( a )  a t  081.28 with 
a , b , c .  experimenta 1 ly determined mean s treaml i ne pa ttern (b 1 and 

mean axial velocity profiles ( c )  as measured by Faler and 
Leibovich (1978) .  

104 



i n f l o w  the Rossby number was above c r i t i c a l  value and, as the f low 

evolved, i t  remained supercr i  t i c a l  everywhere. - 
Two a d d i t i o n a l  t e s t  cases were corrrputed w i t h  the parameter, u, 

being chosen as 1.0 and 0.5, respect ive ly .  The Reynolds number was 225 

and the Rossby number a t  in f low,  0.625. The purpose of the t e s t s  was t o  

determine i f  the j e t - l i k e  a x i a l  v e l o c i t y  p r o f i l e  would delay the onset 

of vortex breakdown. The computations were n o t  c a r r i e d  o u t  t o  

completion because i t  became apparent t h a t  breakdown would occur near 

the i n f l o w  boundary. This  was analagous to the r e s u l t s  t h a t  were 

obtained f o r  the case Ro=0.625, Re=225 and = 0.0, discussed i n  d e t a i l  

p rev ious l y .  

Tests t o  a s c e r t a i n  the e f f e c t  o f  g r i d  s i z e  and domain l eng th  on the 

time evo lu t i on  o f  the s o l u t i o n  were performed. I n  a l l  cases the Rossby 

number and Reynolds number were m i n t a i n e d  a t  values of 0.5 and 225, 

respec t i ve l y .  The vortex was imbedded i n  a un i form f r e e  stream. The 

i n f l o w  a x i a l  v e l o c i t y  p r o f i l e  was uniform. The s o l u t i o n  was computed 

over three d i f f e r e n t  domain lengths;  16.0, 24.0,  and 32.0 

( x - d i r e c t i o n ) .  The s t r e t c h i n g  coe f f i c i en t ,  a, p r e s e n t  as a parameter i n  

Eq. (4.16), was equal to 1.15 f o r  the cases hx=16.0 and hx=24.0. F o r  

the case hx=32 i t  was s e t  equal to 1.25. This r e s u l t e d  i n  m i n i m u m  c e l l  

s i zes  o f  0.13, 0.195 and 0.46 f o r  the domain lengths 16.0, 24.0, and 

32.0, respect ive ly .  The s t re t ch ing  parameter e, (present  i n  Eqs. (4.17 1 

and (4.18) f o r  the y and z d i r e c t i o n  g r i d s )  was s e t  equal to 4.5. The 

domain i n  the y and z d i r e c t i o n  was given by O<y<lO and O<z<lO. I n  

each case, the minimum a x i a l  v e l o c i t y  was p l o t t e d  a s  a funct ion o f  

t ime. r e s u l t s  were p l o t t e d  i n  Fig. 5.34. The r e s u l t s  showed t h a t  
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the e f f e c t  of increased domain length and c e l l  s i z e  had a minimal e f f e c t  

on the time evo lu t i on  of the so lut ion.  

I t  has been suggested t h a t  vortex breakdown i s  a consequence of 

i n e r t i a l  wave disturbance on the s w i r l i n g  flow. The azimuthal modes 

( e x c l u d i n g  n-0) of these disturbances correspond t o  the asymmetric 

i n t e r n a l  s t ruc tu re  o f  the bubble. Any f l a w  v a r i a b l e  can be descr ibed 

by F o u r i e r  ser ies i n  the azimuthal ( e )  d i r e c t i o n  i n  the form: 

I t  i s  of  i n t e r e s t  t o  examine the F o u r i e r  c o e f f i c i e n t s  of  the r a d i a l  

v e l o c i t y  component i n  f r o n t  of and w i t h i n  the breakdown region. I n  

o rde r  t o  compute the coe f f i c i en ts ,  the o r i g i n a l  data were i n t e r p o l a t e d  

t o  produce data a t  spec i f i ed  c y l i n d r i c a l  I r , e , x )  l oca t i ons .  The F o u r i e r  . 

c o e f f i c i e n t s  ( C n )  were then e a s i l y  computed us ing Fas t  Four ie r  Transform 

techniques. For these ca lcu lat ions,  A e  was taken a s  ten degrees (x /18 )  

which r e s u l t e d  i n  36 spacia l  l oca t i ons  along a given radius.  The 

c o e f f i c i e n t s  were tabulated i n  magnitude, phase angle form for  the modes 

n=0,1,2,3. These r e s u l t s ,  f o r  combinations of A x , r , t ) ,  appear i n  Tables 

5.1 and 5.2. The mgn i tudes  o f  the c o e f f i c i e n t s  f o r  a l l  higher mode 

numbers were i n s i g n i f i c a n t ,  thus they were n o t  tabulated. 

A b r i e f  i n v e s t i g a t i o n  i n t o  the upstream propagat ion o f  wavelike 

disturbances was performed. The purpose o f  the t e s t s  was t o  determine 

if a p p r o p r i a t e l y  defined wavelike disturbances in t roduced a t  the outf low 

boundary would propagate upstream. Disturbances o f  the form 

2 -r av/ay/aw/az = e A s i n ( 2 x  f * t )  ( 5 . 3 )  
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Table 5.1 

Complex Four ie r  Coef f ic ients  fo r  the Radial  Ve loc i t y  Component 
I 

o(,r) n =O n=l n=2 n=J 

(0 .56 ,0 .5 )  
(0 .56 , 1.0)  
(0.56.1.5 1 
(0.56,Z.O) 
(0.56.2.5 
(4.15 ,O. 5) 
( 4 . 1 5 , l  .O) 
(4 .15 ,1 .5)  
(4 .15 ,2 .0)  
(4.15.2.5) 
( 6.95,0.5 1 
(6 .95 , 1 .O) 
(6 .95 ,1 .5)  
( 6.9 5 ,.2 . 0 1 
(6.95,2.5) 
(8 .62 ,O. 5 
( 8 . 6 2 , l  .O 
(8  -62 , 1.5 1 
(8 .62,2 .O 1 
(8.62.2.5 1 
( 1 2 . 4 0 , O S  1 
( 12.40 , 1.0) 
(12.40,1.5) 
(12.40,2.0)  
( 12.40,2.5 

(0 .03  ,O.O 1 
( 0.04 ,O . 0 1 
(0.04,O.O) 
(0.03 ,O .O) 
(0.03 ,O.O) 
(0.00,3.14) 
(0.08 ,O.O) 
(0 .23 ,O.O) 
(0.24,O.O) 
(0.18 ,O .O 
(0  .oo ,o .o ) 

(0 . 10 ,o. 0) 
(0.17 ,O.O) 
( 0.16 ,O.O) 
(0.16 ,O.O 
(0.05 ,O. 0)  

(0 .03 ,3  . 14)  
(0.10,3.14) 
(0.14,3 -14)  
(0.12,3.14) 
(0 .01 ,3  - 1 4 )  
(0 .01,3.14)  
(0 .02,3 . 1 4 )  
(0 .02,3.14)  
(0.01,3 . 14)  

(0.01,3.11) 
(0.01,3.09 1 
(0.01.3.14) 
(0.00 , 3.04 1 
(0.00,2 -95 ) 
( 0  .OO ,2.94 1 
( 0  .OO ,-0.7 8 1 
(0.01,-2.29) 
(0.01, -2 -77 
(0.01 ,-2.7 6 1 
(0.02 ,-2.92 
( 0.04,2. S 1 1 
(0.03,1.25 1 
(0.02,1.13) 
(0.01,1.35) 
(0.05 , -0 . 46 
(0.02 ,-1 -17 
10.02 ,-2 -06 
(0.03,-2.27 
(0.03 ,-2.06 1 
(0.07 ,-1.45) 
(0.04, -1.56 1 
(0.03,-1.67 
(0.02,-1.7 1) 
(0.02,-1.79) 

(0  .OO,-1.82 
( 0  .OO ,-1 -96)  
( 0  .OO ,-1 -94)  
(0.00,-1.47 
(0 .OO , -1 ..03 
(0 .OO ,-0 . 98) 
(0.00,-0.43) 
(0.01 ,3 .05 1 
(0  .oo *-0. 91 1 
(0.00 ,O. 66 1 
(0.00,-0.67 1 
( 0  -02 ,-2 - 4 0 )  
( 0  -02 ,-2 -83  
(0.01 ,-2 . 60) 
(0.00,2.52) 
( L O O  ,-0 .7 5 1 
(0.00,0.07 
(0.00 ,2 -50) 
(0.00,3.12) 
(0.00 D o .  01) 

(0 -00 # 2  0 1 0 )  
( 0  .OO , 1.83 
(0.00,1.57 
( 0 . 00 , 1 -8 1 
(0.00,1.71)  

(O.U0,-3.09 1 
(0.00,-0.41) 
( 0  .OO ,-0.68 
( 0.00 , -0.83 
(0.00,-0.59 
(0.00 ,O .88 1 
(0.00,-2.22) 
(0.00 , -0 .go )  
(0.00,-1.47) 
( 0.01 -1.94 1 
(0.00,2.78) 
(0.01 s-1.19) 
(0  .O , -1.87 ) 

( 0  -00 , -0 -92 
(0  .OO , -0.7 2 )  
( 0  .OO ,-1 -26 1 
(0  -00 J.74) 
(0.00 ,-2.38 ) 

(0.00,-2.18) 
( 0  .OO .-3 .OO 

(0.00,-0.57 1 
( 0 00 -0 0 2 
(0.00,1.77) 
( 0  .OO , 2.45) 
(0.0.0,-2.17 



Table 5.2 

Complex F o u r i e r  C o e f f i c i e n t s  f o r  the Radia l  Yeloci t y  Component 

n=O n= l  n=2 n=3 

(0.56,O.S) . 

(0.56,l.O) 
(0.56.1.5) 
(0  -56.3 .O) 
(0.56.2.5 1 
(4.15 ,O. 5 1 
(4.15.1 .O 1 
(4.15.1.51 
(4.15,2.01 
(4. i5,2.5) 
(6.95,0.5) 
(6.95.1.01 
(6.95 ,l.S 
(6.95,Z.O) 
(6.95,Z.S 
(8 . 62 ,O. 5 
(8.62,l .O) 
(8.62,l . 5 
(8.62,2.0 1 
(8.62,2. 5 1 
(12.40,O.S) 
( 12 . 40,l. 0 1 
(12.40,l.S 1 
( 12 . 40,2.0 
(12.40,2.5) 

(0.04,O.O) 
(0.05 ,O. 0 1 
(0.05 ,O .O 1 
( 0 -04 ,O. 0 1 
(0.04 ,O .O 1 
(0.02 ,o. 0 1 
(0.02,O.O) 

(0.19,O.O) 
(0.27 ,O.O) 

(0 .23 ,O . 0 1 
(0.01 ,o.o 
(0.01 ,O.O) 
( 0 .oo,o . 03 

( 0 -03 ,O . 0 ) 
(0.13 ,O .O 1 
(0.02,3 . 14) 
(0.07 ,O.O) 

(0.07 ,O.O) 

(0.01,3 -08 1 
(0.01,3 . 09 
(0.00,3.04 1 
(0.00,2 -93 
(0  .OO ,2.82 1 
(0.02,-2.27 1 
(0.01 ,-2.60) 
~0.01,-2.11~ 

(0.02,-2.29 
(0.01, -2.28 
( 0  .OS ,2 -78 
(0.05 ,-2 -58 1 
( 0 .OS ,-I .32 1 
(0.05,-0.57 ) 

(0.01 ,O. 61 1 
(0.07,0.52) 
(0 .08,1.20 1 
(0.05,1.46 

(0.02,0.0).. * (0.04,2.86) 
(0.01.3 -14) (0.06,-3.00) 
(0.02,3 . 14) (0.10 ,-I .7 6) 
( 0.06.3.14 (0.05,-1.97 
(0.10,3.14) (0.03 ,-2.35 1 
(0.11,3.14) (0.02,-2.57 
( 0.09,3.14 1 (0.01 ,-2.42) 

(0.00,2.29) 
(0.00,2.42) 
(0.00,2.57 1 
(0.00,2.79 1 
(0  .00,3.09 
( 0  .OO,-2.50 
( 0  -00 ,-1.94 
(0.00,-1.34 1 
(0.00,-0.33) 
(0.00 ,O .39 1 
(0.01 ,-1.50) 
(0  -01 ,-(I. 54) 
(0.01 , O m  1 
(0.02,1.77 1 
(0.01,2.91) 
( 0,06,0.05 ) 

(0.01,-0.67) 

(0.01 ,-2.43 
(0 .o I ,-0.00 
( 0 . 03, -0 . 13 1 
(0  .OO ,1.96 1 
(0 . 00.1.87 1 
(0.00,2.86) 
( 0.00,O. 95 1 
(0  .OO, 0.48 1 

( 0  .OO, -2.39) 
( 0  . 00, -0 -45 ) 
( 0  .OO, -0.7 9) 
(0.00,-0.92) 
( 0  .oo, -0.92 
( 0  .OO, 1.55 
(0  .OO,O .7 1) 
(0.00,0.87 
(0.00,0.29) 

( 0  .OO ,-2.54 
(0.01,2.26) 
(0 -01 ,-2.90 
(0.00,-1.97) 
( 0.01 ,-2.56) 
(0.00,-1.27) 
(0.02,1.74) 
(0.01,1.74) 
(0.01,2.60) 
(0.01 ,-2 -85 1 
(0.01,3.03 
(0.00,1.26) 
( 0  .OO, 1.64) 
(0.00,1.89) 
( 0.00,2.7 4 1 
(0  .OO, -2.7 0 1 
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were in t roduced where the amplitude A=0.03 and the frequency f04.0. 

Three t e s t  cases were invest igated. I n  two cases the vor tex was 

imbedded i n  a uniform free st ream, In nne o f  these cases the Rsssby 

number was 0.5 and i n  the other  case the Rossby number was 0.8. I n  the 

t h i r d  case the-  Rossby number a t  i n f l ow  was 0.8 and the vor tex was 

imbedded i n  a dece le ra t i ng  flow. I n  each case the s o l u t i o n  obtained 

w i t h  f o r c i n g  a t  the outf low boundary was subtracted from a base flow 

s o l u t i o n .  This base f l o w  was the s o l u t i o n  t h a t  r e s u l t e d  from i d e n t i c a l  

i n f l o w  and i n i t i a l  condi t ions,  but w i t h o u t  f o r c i n g  a t  out f low.  For the 

s p e c i f i c  f o r c i n g  frequency and forcing amp1 i tude combination appl ied,  no 

d is turbances were seen t o  propagate upstream ( f o r  t ime t < 8 ) .  A 

discuss ion of the mo t i va t i on  fo r  these t e s t s  fo l lows. 

The theor ies of Squire [7] and Benjamin (81 p e r t a i n  t o  s t a t i o n a r y  

d is turbances present on columnar vor t ices.  Randall and Leibov ich [l81 

have shown t h a t  f o r  upstream propagation t o  be possible,  the base 

v o r t i c a l  f low must change i n  the a x i a l  d i r e c t i o n .  This would be the 

case i f  an adverse pressure gradient were encountered. This  pressure 

g r a d i e n t  could be sel f - induced (through viscous- d . i f f us ion )  or  e x t e r n a l l y  

imposed. Thus the mo t i va t i on  f o r  the three . p rev ious l y  mentioned 

tes ts .  That the disturbances did n o t  propagate upstream i n  the cases 

where the vor tex was imbedded i n  a un i form f r e e  stream was expected. 

These s o l u t i o n s  were al lowed t o  develop fo r  8 t ime u n i t s ,  thus the 

v o r t i c e s  remained near ly  c y l i n d r i c a l  (no v a r i a t i o n s  were present  i n  the 

a x i a l  d i r e c t i o n ) .  I n  the t h i r d  case i t  was expected t h a t  some type of  

d i s tu rbance  would have propagated upstream ta the c r i t i c a l  s t a t i o n .  

Poss ib ly  the f o r c i n g  frequency/ampl i tude combination t h a t  was imposed 

r e s u l t e d  i n  waves t h a t  were damped immediately. 
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CONCLUSIONS 

Numerical s o l u t i o n s  o f  the f u l l y  three-dimensional Navier-Stokes 

equat ions were obtained f o r  vortex breakdown. The numerical a lgor4 thm 

was an implementation of the ve loc i  t y - v o r t i c i  t y  formula t i o n  developed by 

Gatski ,  Grosch and Rose [39]. I n  t h i s  formulat ion,  both the v e l o c i t y  

and v o r t i c i t y  vectors  a r e  second order  accurate i n  space and time. The 

s o l u t i o n s  were presented f o r  unconfined v o r t i c e s  of the leading edge 

type and were parameterized by the Rossby number and the Reynolds 

number. Breakdown was predic tab le using the l o c a l  Rossby number a s  the 

c r i t i c a l  parameter. 

The present a n a l y s i s  supports Squ i re ' s  [7] e a r l i e r  conjecture t h a t  

the phys ica l  mechanism responsible f o r  breakdown i s  the growth o f  

wavel ike disturbances a long the vortex core. The C o r i o l i s  accelera t i o n  

produces a r e s t o r i n g  fo rce  which i s  I Esponsible f o r  the c rea t i on  o f  the 

d is turbance waves. This  e f f e c t  was descr ibed i n  terms o f  the Rossby 

number by examining the theoret ica , computational and experimental 

r e s u l  t s  a v a i l a b l e  i n  the l i t e r a t u r e .  The r e s u l t i n g  c o r r e l a t i o n s  showed 

t h a t  when the Rossby number of the base v o r t i c a l  f low decreased t o  

approximately 016, breakdown occurred. 

The Rossby number c r i t e r i o n  may f i n d  p r a c t i c a l  a p p l i c a t i o n s  i n  the 

f i e l d  o f  aeronaut ics.  For instance, i t  would be advantageous if vortex 

breakdown could be induced i n  the case of t r a i l i n g  wing t i p  v o r t i c e s  

111 



generated by commercial a i r c r a f t .  Retarding vor tex breakdown i s  

d e s i r a b l e  i n  the case of leading edge v o r t i c e s  generated by d e l t a  wing 

type m i l i t a r y  a i r c r a f t .  I n  app l i ca t i ons  sNch a s  s w i r l  c m b c s t w s ,  the 

i n t e r n a l  s t r u c t u r e  of the breakdown r e g i o n  i s  of  importance. The size,  

shape and s t a b i l i t y  o f  the r e c i r c u l a t i o n  zone a r e  c r i t i c a l  to flame 

s t a b i l i t y  and performance. Optimal r a t e s  of entrainment and m ix ing  

could be p red ic ted  through a numerical s imu la t i on  o f  the process. 

D e t a i l e d  r e s u l t s  o f  vortex breakdown were obtained f o r  two 

numerical  s imulat ions.  I n  the f i r s t  case, (Ro=0.625, Re=225) the vor tex 

was imbedded i n  a uniform free stream. I n  the second case, (Ro=0.8, 

Re=225) the vortex was imbedded i n  a d e c e l e r a t i n g  free stream. The 

i n t e r n a l  s t r u c t u r e  o f  the r e s u l t i n g  s o l u t i o n s  d i f f e r e d  d ramat i ca l l y .  

The s t r u c t u r e  r e s u l t i n g  f r o m  the f i r s t  case consis ted o f  a s ing le ,  

steady, nea r l y  symmetric t o r o i d a l  r e c i r c u l a t i o n  zone. The leng th  o f  the 

bubble was de f ined -by  the GO e x i s t i n g  s tagnat ion po in ts .  The s t r u c t u r e  

i n  the second, decelerat ing case contained mu1 t i p l e  i n t e r n a l  c e l l  s, or 

" r i n g "  vo r t i ces .  I n  addi t ion,  the flow w i t h i n  the bubble was unsteady, 

asymmetric and dominated i n  the a f t  p o r t i o n  b y -  l a r g e  amp1 i tude v e l o c i t y  

f l u c t u a t i o n s .  

The discrepancy between the r e s u l t s  o f  the f i r s t  case and the 

exper imental  r e s u l t s  may be a t t r i b u t e d  to the p r o x i m i t y  o f  the numerical 

breakdown t o  the i n f l o w  boundary. I n  t h a t  case, the f i xed  boundary 

c o n d i t i o n s  a t  i n f l o w  a c t  as an a r t i f i c a l  c r i t i c a l  b a r r i e r  t o  the 

propagat ion o f  waves. A t  the in f low boundary, the ampli tude o f  a 

s tanding wave grows to the extent t h a t  s tagnat ion p o i n t s  and reversed 

f l o w  appear along the ax is .  I n  the d e c e l e r a t i n g  case, the c r i t i c a l  

cond t i o n  a r i s e s  from the Rossby number e f f e c t  i n  a manner analagous t o  
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experimental f i n d i n g s .  The solut ion i s  not  contaminated by the in f low 

boundary layer or by an ar t i f ical  cr i t ical  cond i t ion .  In a d d i t i o n ,  the 

uns t eady  feawres of t h i s  case my be due to dtsturbances originating 

downstream since the flow was imbedded i n  the decelerating stream. The 

bubble i n  the f i r s t  case was imbedded i n  a uniform free stream, thus i t  

i s  expected t h a t  downstream disturbances should be damped immediately. 

This would account for  the nearly steady features of t h a t  flow. This 

could  n o t  be confirmed by the tests w h i c h  employed forcing a t  the 

ou t f l  ow boundaries. 

For  the case Ro=0.8, Re=225 the radial velocity component was 

expanded i n  a complex Fourier series i n  the circumferential direction. 

An examination of the resulting Fourier coefficients c n ( x , r , t )  has shown 

t h a t  the n=O mode i s  the dominant mode a t  a location slightly upstream 

of the f i r s t  stagnation p o i n t  for  a l l  time levels. A t  time level 

t~81.28, the magnitude o f  the n = l  mode i n  certain areas w i t h i n  the 

breakdown region i s  significant. A t  the later time level t=91,82, the 

magnitude of the n = l  modes w i t h i n  the breakdown region has increased. 

T h i s  indicates that the asymmetric structural- features of the bubble, 

due primarily to n = l  mode disturbances, have been enhanced w i t h  time. 

I n  conclusion, theoretical results,  interpreted i n  terms of a 

Rossby number , give conditions favorable f o r  the occurrence o f  

breakdown, By considering the flow t o  be three-dimensional , unsteady 

a n d  asymmetric, the a u t h o r  believes the f i r s t  correct numerical 

representation of the internal structure of  the "bubble" type breakdown 

was computed. 
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APPENDIX A 

EXPONENTIAL TRANSFORMATION 

Gatski ,  Grosch and Rose [39] employ an exponent ia l  t ransformat ion 

o f  the form 

where [B,] i s  a constant matr ix ,  to e l i m i n a t e  the e x p l i c i t  appearance o f  

the vor tex s t r e t c h i n g  term from the v o r t i c i t y  t r a n s p o r t  equation. The 

procedure i s  o u t l i n e d  below. 

The v o r t i c i t y  t r a n s p o r t  equation i s  w r i t t e n  i n  the form 

i 
' jj = vw j i  i 

aw 
'j 

- +  u.wi - w u  a t  J 'J 
Bn ( t- tn 1 

ci i 
l e t  ui 'j = Bn '  a constant a t  time l e v e l  n. In t roduce w = e 

i n t o  the above equation. This r e s u l t s  i n  the f o l l o w i n g  transformed 

equa ti on. 

[ B n ( t - t n ) l  [Bn(t-tn)l,,i C B n ( t - t n ) l  
u C ' j  j 

- + e  a t  C + e  'ne 

CBn( t-tn)l CB,(t-tn)l - 9"e cj = ve c 'jj 

I t  i s  apparent t h a t  the vortex . s t r e t c h i n g  term i s  e l im ina ted  

through the time d e r i v a t i v e .  The r e s u l  t i n g  equat ion appears below. 
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APPENDIX 8 

REDUCTION OF X-SWEEP V O R T I C I T Y  EQUATIONS TO 
TRIDIAGONAL FORM 

The reduc t i on  of the x-sweep v o r t i c i t y  equations t o  t r i d i a g o n a l  

form i s  shown below. For the sake o f  c l a r i t y  on l y  app rop r ia te  i n d i c e s  

a r e  expressed. The d e r i v a t i o n  o f  the y and z sweeps a r e  analogous, w i t h  

on l y  the f i n a l  r e s u l t s  being expressed. 

The 3-D advect ion d i f f u s i o n  equation f o r  the transformed v o r t i c i t y  

and the necessary averaging condi t ions appears below as Eqs. (81) t o  

(B14). Note t h a t  the (u,v,w) ve loc i t y  components represent  averages a t  

c e l l  centers. 
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where 

1 1 
X 

K 

1 a y i  = t  
K Y  

- Ax 
hx - 2  

1 1 1  

1 1  1 

( 8 8 )  

1 1 . K  ‘ Z  

(87 1 

( 8 1 2 )  

a z t  11 1 1 

The f i r s t  step i s  t o  e l im ina te  the n i l / *  time l e v e l  dependence from 

equat ion (81) as fo l lows.  Combine the i d e n t i t y  

w i t h  Eqs. ( B 5 )  through ( 7 )  t o  ob ta in  the fo l l ow ing  three vector  

equations. 

When Eqs. (816) t o  (818) are each combined w i t h  Eq. (811, three 

systems o f  equations r e s u l t ,  each o f  which can be solved simultaneously 

f o r  a component of the viscous terms 6x i .  6 i and 6z t .  

The systems appear below a s  Eq. (820). 
Y 

V T  



+ 

where 

1 0 0  

0 1  0 

0 0 11 

2 

+ 1  K x  - - - hxpx 
VT 

h2 P 
K = - + I  

Y V T  

2 
K z - - +  - h* p, 1 

V T  

(B19 1 

(820) 

(821)  

Take  the inverse of the m a t r i x  on the l e f t  s i de  of Eq.  (819). T h i s  

i s  g iven a s  

where 

Ia31 432 4331 

B = 2 + K K K  - ( K x + K + K Z )  
X Y  2 Y 

= ( K  K - 1) 
Y Z  

a12 = - ( K Z  - 1) 

a = ( l - K )  
13 Y '  

(824)  
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aZ3 = -(Kx - 1 )  

a31 = ( 1  - K 1 
Y 

a32 = -(Kx - 1 )  

= (K K - 1 )  
a33 X Y  

M u l t i p l y  m a t r i x  Eq. ( 8 1 9 )  by m a t r i x  ( 8 2 3 ) .  This r e s u l t s  i n  t h e  

f o l l o w i n g  e x p r e s s i o n s  fo r  t h e  v i scous  terms. 

- - n- 1/2 
+ a  23 ( P Z W  - c 
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Only  Eq.  (834) i s  needed f o r  the derivation'of the x-sweep t r i d i a g i o n a l  

system. Equations (8353 and (836) are needed f o r  the y-sweep and z- 

sweep derivations respectively. Performing the difference opera t i o n  

indicated on the l e f t  side of Eq. (834) results i n  the f o l l o w i n g  

expression 

where - A t  
Ax -z. 

The appropriate combination of Eq.  ( 8 2 )  an1 

the f o l l o w i n g  expression for  5 
i - 112 

Eq. (839) resu 

(838 1 

(839) 

t s  i n  

M u l t i p l y  each side of  Eq. (837) by y l  and  substi tute the result  i n t o  E q .  

(B40) . The resul t i n g  expression f o r  ;i+ I,~ i s  given as ,  

+ 
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+ 
UY Ax 

+ 
Y ‘ x  Ax 

vfl 
+ a + a ) ~ v b  2 + wb :I 

2 ((Ill 12 13 y 
+- ( B 4 1 )  

The expression f o r  a , obtained i n  a s i m i l a r  manner, appears i- 1/2 
below. - 

+ 
Y, Ax 

Index Eq. (842)  by i+l  and equate f luxes of 4 across a c e l l  face t o  

o b t a i n  the f o l l o w i n g  e q u a l i t y .  
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where 

and 

- c  

+ R- 

+ R+ ( 843 1 

(844 1 

( 845 1 

Performing the d i s c r e t i t a  t ions,  r e a r r a n g i n g  and r e d e f i n i n g  yx*  a s  

r e s u l t s  i n  the t r i d i a g o n a l  form of the equat ions for  the x sweep given 

below. 

- a a uh -1 - 11 1 x  
i +1 B B sxlli+l C i +  3 1 2 ’  

- A  [Yx (-+-I - 
- 

a a u h  -1 - 11 1 x  
i+l x $ + sxJli+l 

+ { - A  ( y  ( - - -  
B 

17C; 





A 
T 

B I i - Ci.j+q2 
+ h yX (B al 2 + Y) 

X 
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I .  

- n- '/2 ayy a~ ' j + l  A B  
- - 

Y j + l  

I 

- n- 4 2  
5 

- - 
a1 - "11 + a12 + 9 3  

where 

and X 
2vh - 

s x  -hx 

The t r i d iagona l  equation f o r  the y sweep takes the form 

- 
+ s I,.} - -1 

Y J j +  42 

- 
i+ Vz , j + r  j+l  
i 

(847 1 

( 848 1 

(849 

128 



129 

Y 

a wh ‘23 2 z )  
B Y 

- 
j+l ‘j+l, k+ 1/2 

- 
j+l ‘j+l ,k-  42 

- 
a2 = a21 + a22 + 53 where 

and 
2vA 

- Y  
sy -7 

The t r i d i a g o n a l  equa t ion  f o r  t h e  z-sweep takes the form 
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2yz 013 - = -  - n- ’/2 - 2yz 4 
‘z’ 

‘k+l 
k + l  ‘ZB 

- n- 9 2  
‘k 

k 

a a u h  ’Z 3 1  3 x 
+ - ( - + -  1 ’ ‘ B .  

Z 

- 
‘ i +  14 , k + l  k + l  

Z ’ - 
k + l  ‘1- ‘/2 , k + l  

- 
z k + l  ‘j+ l/2 , k + l  

a a uh 

Lz . B ’ k  I 

‘ Z  31 3 x + -  (- + - - 
‘ i +  1/2 , k 

yz 5 2  - 5”L) +h(B 
Z 

- 
‘j- l/2 , k + l  k+l. 



where 

and 

- 
'3 - '31 + '32 + ( 5 3  

z 2vh 
A2 

- sz  - - 

(654) 
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APPENDIX C 

DERIVATION OF PRESSURE EQUATION 

The three sca la r  components o f  the Navier-Stokes equat ions a re  

g iven by 

- + u - + v - + w - = - - + v v 2 u  au au au au -1 ap 
a t  ax a Y  a t  P ax 

- + ~ - + v - + w - = - - + v o 2 v  av av av av -1 ap 
a t  ax a Y  az P ay 

- + u - + v - + w - = - - + v $ w  aw aw aw aw -1 ap 
a t  ax aY az p a t  

Take the p a r t i a l  d e r i v a t i v e  o f  Eq. (C1) w i t h  respec t  t o  x ,  Eq. (C2) 

wi th  respec t  t o  y and Eq. (C3) wi th  respec t  to z and f i n d  

a 2  2 -1 2 
a P  + v - ( v  u) + w  - - + w - r -  aw au a u  

ax a t  a x a t  P 2 ax 



Add Eqs. (C4), ( C 5 )  and (C6) together t o  f ind,  

- a (- au + - av + -) a w  + (-) au + (-) av + (-) aw 2 + 2 (- av  - au 
a t  ax  ay az ax ay . az ax  ay 

2 a w  aw au aw av a u  2 a v  2 
+ " ( - Z + a x a y + &  + - - + - - )  

a x  a t  ay az 
ax 

2 2 
a v  a w, 

2 a u  + w  ( -+-+ 
2 2 2 d v  a u  a w  

dY + v ( 2 + w + m  axay ayaz a,2 

a 2  a 2  a 2  - - -  v P + v r- ( 0  u) + -  (0 v )  + -  ( 0  w ) ]  
- 1 2  

(C7)  P ax aY az 

Imposing the c o n t i n u i t y  cond i t i on  

1 t o  be w r i t t e n  as:  

Expand the f i r s t  three terms on the l e f t  s ide o f  Eq. (C9) a s  

follows: 
au av aw au av aw 2 

(z) + (-) + (-) = (- + - + - )  
aY  az ax ay a t  



I m p o s i n g  t h e  c o n t i n u i t y  e q u a t i o n  on Eq. (C10) and s u b s t i t u t i n g  t h e  

results i n t o  Eq. (C9) results i n  the f o l l o w i n g  e l l i p t i c  e q u a t i o n  for t h e  

p r e s s u r e  f i e l d .  

134 



r 
1. Report No. 2. Government Accession No. 3. Recipient's Catalog No. 

~ 

7. Author(s) 

Robert E .  Spa11 

4. Title and Subtitle 

8. Performing Organization Report No. 

5. Report Date 

~ 

I 

National Aeronau t i c s  and Space Adminis t ra t ion 
Washington, DC 20546 

A NUMERICAL STUDY OF THREE-DIMENSIONAL 
VORTEX BREAKDOWN 

14. Sponsoring Agency Code 

Robert L .  A s h  

Old Dominion U n i v e r s i t y  Research Foundation 
P . O .  Box 6369 
Norfolk,  V i r g i n i a  23508 

12. Sponsoring Agency Name and Address 

9. Performing Organization Name and Address 

. 

IS. Supplementary Notes 

Technical Monitor: John Anders, J r .  
P r inc ipa l  I n v e s t i g a t o r :  Dr. Robert L .  Ash  

10. Work Unit No. 

11. Contract or Grant No. 
NAG-1-530 

13. Type of Report and Period Covered 

Cont rac to r  Report 

16. Abstract 

A numerical s imula t ion  of bubble-type vortex breakdown us ing  a unique d i s c r e t e  
form o f  the f u l l  three-dimensional ,  unsteady incompressible  Navier-Stokes e q u a t i o n s  i s  
performed. T h e  Navier-Stokes equa t ions  a r e  w r i t t e n  i n  a v o r t i c i  t y - v e l o c i t y  form and 
the physical  problem i s  not  r e s t r i c t e d  t o  axisymmetric f low.  
previous s tudy ,  the problem is  parametr ized i n  terms o f  a Rossby number-Reynolds 
number b a s i s .  U t i l i z a t i o n  o f  this parameter duo d i c t a t e s  the form o f  the f r e e - f i e l d  
boundary c o n d i t i o n  s p e c i f i c a t i o n  and al lows con t ro l  of the a x i a l  breakdown l o c a t i o n  
w i t h i n  t h e  computational domain. The s t r u c t u r e  of the breakdown bubble i s  s t u d i e d  
t h r o u g h  time e v o l u t i o n  p l o t s  of  p l a n a r  pro jec ted  v e l o c i t y  v e c t o r s  a s  well a s  through 
p l o t s  of p l a n a r  p r o j e c t e d  v e l o c i t y  vec to r s  as well a s  through p l o t s  o f  p a r t i c l e  
t r a c e s  and vo r t ex  lines. These r e s u l t s  a r e  f avorab ly  compared w i t h  previous experi- 
mental studies. In a d d i t i o n ,  p r o f i l e s  of  a l l  three v e l o c i t y  components a r e  p re sen ted  
a t  var ious  a x i a l  s t a t i o n s  and a Four i e r  a n a l y s i s  i s  performed t o  i d e n t i f y  the dominant 
c i r c u m f e r e n t i a l  modes. The dynamics of the breakdown process a r e  studied t h r o u g h  
p l o t s  of a x i a l  v a r i a t i o n  of  r a t e  of change o f  i n t e g r a t e d  t o t a l  energy and r a t e  of  
change of i n t e g r a t e d  ens t rophy,  a s  well a s  through contour  p l o t s  of v e l o c i t y ,  v o r t i -  
c i t y  and p res su re .  

Based on t h e  r e s u l t s  o f  

7. Key Words (Suggested by Author(s)) 
Vortex Dynamics, Navier-Stokes Equations,  
Vortex Breakdown, Laminar Flows, Three- 
Dimensional Flows, Numerical So lu t ion ,  
V o r t i c i t y - V e l o c i t y  Formulation, Breakdown 
Bubble 

18. Oistribution Statement 

I I I 

19. Security Ctaoif. (of this report) 20. Security Classif. (of this page) 21. NO. of Pages 

For sale by the National Technical Information Service. Sprinefield. Virginia 22161 

22. Rice' 


